Effect of the magnetic field on the heat transfer coefficient of a Fe3O4-water ferrofluid using artificial intelligence and CFD simulation
被引:11
作者:
Khosravi, Ali
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Minas Gerais UFMG, Grad Program Mech Engn, Belo Horizonte, MG, BrazilFed Univ Minas Gerais UFMG, Grad Program Mech Engn, Belo Horizonte, MG, Brazil
Khosravi, Ali
[1
]
Malekan, Mohammad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sao Paulo, Med Sch, Dept Bioengn, Heart Inst InCor, Sao Paulo, SP, BrazilFed Univ Minas Gerais UFMG, Grad Program Mech Engn, Belo Horizonte, MG, Brazil
Malekan, Mohammad
[2
]
机构:
[1] Fed Univ Minas Gerais UFMG, Grad Program Mech Engn, Belo Horizonte, MG, Brazil
[2] Univ Sao Paulo, Med Sch, Dept Bioengn, Heart Inst InCor, Sao Paulo, SP, Brazil
SUPPORT VECTOR REGRESSION;
GLOBAL SOLAR-RADIATION;
NEURAL-NETWORK;
PREDICTION;
NANOFLUID;
MODEL;
FLOW;
IRRADIATION;
GENERATION;
CONSTANT;
D O I:
10.1140/epjp/i2019-12477-5
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
.A ferrofluid is a magnetic fluid which is composed of magnetic nanoparticles with the size of 5-15nm immersed in a base fluid (such as water, oil, etc.). Although the amount of thermal conductivity of the magnetic nanoparticles is lower than that of metallic and metallic oxide nanoparticles, their constructability by magnetic field makes them ideal to be used in heat transfer applications. In this study, the heat transfer coefficient (HTC) of the Fe3O4 nanoparticles dispersed in water under constant and alternating magnetic field is investigated by artificial intelligence methods and CFD simulation. Multilayer feed-forward neural network, group method of data handling type neural network, support vector regression model and adaptive neuro-fuzzy inference system are developed to predict the HTC of the Fe3O4-water ferrofluid under magnetic field. Volume fraction of nanoparticle, intensity of the magnetic field, frequency of the magnetic field, Reynolds number and dimensionless distance of the tube are selected as input variables of the networks and the HTC is selected as output variable of the network. The results show that artificial intelligence methods can successfully predict the target with very good accuracy.
机构:
Islamic Azad Univ, Pardis Branch, Dept Mech Engn, Pardis New City 1658174583, IranIslamic Azad Univ, Pardis Branch, Dept Mech Engn, Pardis New City 1658174583, Iran
Ahmadi, Mohammad Hossein
;
Ahmadi, Mohammad-Ali
论文数: 0引用数: 0
h-index: 0
机构:
PUT, Ahwaz Fac Petr Engn, Dept Petr Engn, Tehran, IranIslamic Azad Univ, Pardis Branch, Dept Mech Engn, Pardis New City 1658174583, Iran
Ahmadi, Mohammad-Ali
;
Mehrpooya, Mehdi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tehran, Fac New Sci & Technol, Dept Renewable Energies, Tehran 141764411, IranIslamic Azad Univ, Pardis Branch, Dept Mech Engn, Pardis New City 1658174583, Iran
Mehrpooya, Mehdi
;
Rosen, Marc A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ontario Inst Technol, Fac Engn & Appl Sci, Oshawa, ON L1H 7K4, CanadaIslamic Azad Univ, Pardis Branch, Dept Mech Engn, Pardis New City 1658174583, Iran
机构:
Islamic Azad Univ, Pardis Branch, Dept Mech Engn, Pardis New City 1658174583, IranIslamic Azad Univ, Pardis Branch, Dept Mech Engn, Pardis New City 1658174583, Iran
Ahmadi, Mohammad Hossein
;
Ahmadi, Mohammad-Ali
论文数: 0引用数: 0
h-index: 0
机构:
PUT, Ahwaz Fac Petr Engn, Dept Petr Engn, Tehran, IranIslamic Azad Univ, Pardis Branch, Dept Mech Engn, Pardis New City 1658174583, Iran
Ahmadi, Mohammad-Ali
;
Mehrpooya, Mehdi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tehran, Fac New Sci & Technol, Dept Renewable Energies, Tehran 141764411, IranIslamic Azad Univ, Pardis Branch, Dept Mech Engn, Pardis New City 1658174583, Iran
Mehrpooya, Mehdi
;
Rosen, Marc A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ontario Inst Technol, Fac Engn & Appl Sci, Oshawa, ON L1H 7K4, CanadaIslamic Azad Univ, Pardis Branch, Dept Mech Engn, Pardis New City 1658174583, Iran