A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification

被引:32
|
作者
Chung, Ren-Hua [1 ]
Kang, Chen-Yu [1 ]
机构
[1] Natl Hlth Res Inst, Inst Populat Hlth Sci, Div Biostat & Bioinformat, 35 Keyan Rd, Zhunan 350, Taiwan
来源
GIGASCIENCE | 2019年 / 8卷 / 05期
关键词
multi-omics data; complex disease study; simulation tool; SEQUENCING DATA; TRAITS; TOOL;
D O I
10.1093/gigascience/giz045
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: An integrative multi-omics analysis approach that combines multiple types of omics data including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics has become increasing popular for understanding the pathophysiology of complex diseases. Although many multi-omics analysis methods have been developed for complex disease studies, only a few simulation tools that simulate multiple types of omics data and model their relationships with disease status are available, and these tools have their limitations in simulating the multi-omics data. Results: We developed the multi-omics data simulator OmicsSIMLA, which simulates genomics (i.e., single-nucleotide polymorphisms [SNPs] and copy number variations), epigenomics (i.e., bisulphite sequencing), transcriptomics (i.e., RNA sequencing), and proteomics (i.e., normalized reverse phase protein array) data at the whole-genome level. Furthermore, the relationships between different types of omics data, such as methylation quantitative trait loci (SNPs influencing methylation), expression quantitative trait loci (SNPs influencing gene expression), and expression quantitative trait methylations (methylations influencing gene expression), were modeled. More importantly, the relationships between these multi-omics data and the disease status were modeled as well. We used OmicsSIMLA to simulate a multi-omics dataset for breast cancer under a hypothetical disease model and used the data to compare the performance among existing multi-omics analysis methods in terms of disease classification accuracy and runtime. We also used OmicsSIMLA to simulate a multi-omics dataset with a scale similar to an ovarian cancer multi-omics dataset. The neural network-based multi-omics analysis method ATHENA was applied to both the real and simulated data and the results were compared. Our results demonstrated that complex disease mechanisms can be simulated by OmicsSIMLA, and ATHENA showed the highest prediction accuracy when the effects of multi-omics features (e.g., SNPs, copy number variations, and gene expression levels) on the disease were strong. Furthermore, similar results can be obtained from ATHENA when analyzing the simulated and real ovarian multi-omics data. Conclusions: OmicsSIMLA will be useful to evaluate the performace of different multi-omics analysis methods. Sample sizes and power can also be calculated by OmicsSIMLA when planning a new multi-omics disease study.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application
    Shahrajabian, Mohamad Hesam
    Sun, Wenli
    CURRENT PHARMACEUTICAL ANALYSIS, 2023, 19 (04) : 267 - 281
  • [2] Comparative analysis of integrative classification methods for multi-omics data
    Novoloaca, Alexei
    Broc, Camilo
    Beloeil, Laurent
    Yu, Wen-Han
    Becker, Jeremie
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (04)
  • [3] Multi-omics Data Integration, Interpretation, and Its Application
    Subramanian, Indhupriya
    Verma, Srikant
    Kumar, Shiva
    Jere, Abhay
    Anamika, Krishanpal
    BIOINFORMATICS AND BIOLOGY INSIGHTS, 2020, 14
  • [4] Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data
    Yan, Jingwen
    Risacher, Shannon L.
    Shen, Li
    Saykin, Andrew J.
    BRIEFINGS IN BIOINFORMATICS, 2018, 19 (06) : 1370 - 1381
  • [5] Visual analysis of multi-omics data
    Swart, Austin
    Caspi, Ron
    Paley, Suzanne
    Karp, Peter D.
    FRONTIERS IN BIOINFORMATICS, 2024, 4
  • [6] Review on Integration Analysis and Application of Multi-omics Data
    Zhong, Yating
    Lin, Yanmei
    Chen, Dingjia
    Peng, Yuzhong
    Zeng, Yuanpeng
    Computer Engineering and Applications, 2024, 57 (23) : 1 - 17
  • [7] Integrative clustering methods for multi-omics data
    Zhang, Xiaoyu
    Zhou, Zhenwei
    Xu, Hanfei
    Liu, Ching-Ti
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (03)
  • [8] Multi-omics approaches to disease
    Yehudit Hasin
    Marcus Seldin
    Aldons Lusis
    Genome Biology, 18
  • [9] Multi-omics approaches to disease
    Hasin, Yehudit
    Seldin, Marcus
    Lusis, Aldons
    GENOME BIOLOGY, 2017, 18
  • [10] Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets
    Argelaguet, Ricard
    Velten, Britta
    Arnol, Damien
    Dietrich, Sascha
    Zenz, Thorsten
    Marioni, John C.
    Buettner, Florian
    Huber, Wolfgang
    Stegle, Oliver
    MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)