Challenges and future directions for representations of functional brain organization

被引:99
作者
Bijsterbosch, Janine [1 ,2 ]
Harrison, Samuel J. [2 ,3 ,4 ]
Jbabdi, Saad [2 ]
Woolrich, Mark [5 ]
Beckmann, Christian [6 ,7 ]
Smith, Stephen [2 ]
Duff, Eugene P. [2 ,8 ]
机构
[1] Washington Univ, Mallinckrodt Inst Radiol, St Louis, MO 63110 USA
[2] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Clin Neurosci, Ctr Funct MRI Brain FMRIB,Wellcome Ctr Integrat N, Oxford, England
[3] Univ Zurich, Translat Neuromodeling Unit, Zurich, Switzerland
[4] Swiss Fed Inst Technol, Zurich, Switzerland
[5] Univ Oxford, Warneford Hosp, Oxford, England
[6] Radboud Univ Nijmegen, Med Ctr, Donders Inst, Nijmegen, Netherlands
[7] Radboud Univ Nijmegen, Med Ctr, Dept Cognit Neurosci, Nijmegen, Netherlands
[8] Univ Oxford, John Radcliffe Hosp, Dept Paediat, Oxford, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
RESTING-STATE FMRI; HUMAN CEREBRAL-CORTEX; INDIVIDUAL-DIFFERENCES; SUBJECT VARIABILITY; GLOBAL SIGNAL; CONNECTIVITY; CONNECTOME; PARCELLATION; NETWORK; PATTERNS;
D O I
10.1038/s41593-020-00726-z
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In this Primer article, Bijsterbosch and colleagues provide an accessible discussion of the challenges faced in analytical representations of functional brain organization and provide clear recommendations to unite a fractionated field. A key principle of brain organization is the functional integration of brain regions into interconnected networks. Functional MRI scans acquired at rest offer insights into functional integration via patterns of coherent fluctuations in spontaneous activity, known as functional connectivity. These patterns have been studied intensively and have been linked to cognition and disease. However, the field is fractionated. Diverging analysis approaches have segregated the community into research silos, limiting the replication and clinical translation of findings. A primary source of this fractionation is the diversity of approaches used to reduce complex brain data into a lower-dimensional set of features for analysis and interpretation, which we refer to as brain representations. In this Primer, we provide an overview of different brain representations, lay out the challenges that have led to the fractionation of the field and that continue to form obstacles for convergence, and propose concrete guidelines to unite the field.
引用
收藏
页码:1484 / 1495
页数:12
相关论文
共 116 条
[1]   Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example [J].
Abraham, Alexandre ;
Milham, Michael P. ;
Di Martino, Adriana ;
Craddock, R. Cameron ;
Samaras, Dimitris ;
Thirion, Bertrand ;
Varoquaux, Gael .
NEUROIMAGE, 2017, 147 :736-745
[2]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[3]   Capturing inter-subject variability with group independent component analysis of fMRI data: A simulation study [J].
Allen, Elena A. ;
Erhardt, Erik B. ;
Wei, Yonghua ;
Eichele, Tom ;
Calhoun, Vince D. .
NEUROIMAGE, 2012, 59 (04) :4141-4159
[4]   Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex [J].
Arslan, Salim ;
Ktena, Sofia Ira ;
Makropoulos, Antonios ;
Robinson, Emma C. ;
Rueckert, Daniel ;
Parisot, Sarah .
NEUROIMAGE, 2018, 170 :5-30
[5]   Magnetoencephalography for brain electrophysiology and imaging [J].
Baillet, Sylvain .
NATURE NEUROSCIENCE, 2017, 20 (03) :327-339
[6]   From the connectome to brain function [J].
Bargmann, Cornelia I. ;
Marder, Eve .
NATURE METHODS, 2013, 10 (06) :483-490
[7]   Investigations into resting-state connectivity using independent component analysis [J].
Beckmann, CF ;
DeLuca, M ;
Devlin, JT ;
Smith, SM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1457) :1001-1013
[8]   Oxygen Level and LFP in Task-Positive and Task-Negative Areas: Bridging BOLD fMRI and Electrophysiology [J].
Bentley, William J. ;
Li, Jingfeng M. ;
Snyder, Abraham Z. ;
Raichle, Marcus E. ;
Snyder, Lawrence H. .
CEREBRAL CORTEX, 2016, 26 (01) :346-357
[9]   The community structure of functional brain networks exhibits scale-specific patterns of inter- and intra-subject variability [J].
Betzel, Richard F. ;
Bertolero, Maxwell A. ;
Gordon, Evan M. ;
Gratton, Caterina ;
Dosenbach, Nico Uf ;
Bassett, Danielle S. .
NEUROIMAGE, 2019, 202
[10]   Multi-scale brain networks [J].
Betzel, Richard F. ;
Bassett, Danielle S. .
NEUROIMAGE, 2017, 160 :73-83