Discrete element method simulations of Mars Exploration Rover wheel performance

被引:64
作者
Johnson, Jerome B. [1 ]
Kulchitsky, Anton V. [1 ]
Duvoy, Paul [1 ]
Iagnemma, Karl [2 ]
Senatore, Carmine [2 ]
Arvidson, Raymond E. [3 ]
Moore, Jeffery [4 ]
机构
[1] Univ Alaska Fairbanks, Inst Northern Engn, Fairbanks, AK 99775 USA
[2] MIT, Robot Mobil Grp, Lab Mfg & Prod, Cambridge, MA 02139 USA
[3] Washington Univ, St Louis, MO 63130 USA
[4] NASA, Ames Res Ctr, Moffett Field, CA 94035 USA
关键词
Mars Exploration Rovers; Discrete element method simulation; Mobility testing; Wheel slip; PARTICLE-SHAPE; MERIDIANI-PLANUM; FRICTION; CRATER; ANGLE;
D O I
10.1016/j.jterra.2015.02.004
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Mars Exploration Rovers (MERs) experienced mobility problems during traverses. Three-dimensional discrete element method (DEM) simulations of MER wheel mobility tests for wheel slips of i = 0, 0.1, 0.3, 0.5, 0.7, 0.9, and 0.99 were done to examine high wheel slip mobility to improve the ARTEMIS MER traverse planning tool. Simulations of wheel drawbar pull and sinkage MIT data for i 0.5 were used to determine DEM particle packing density (0.62) and contact friction (0.8) to represent the simulant used in mobility tests. The DEM simulations are in good agreement with MIT data for i = 0.5 and 0.7, with reasonable but less agreement at lower wheel slip. Three mobility stages include low slip (i < 0.3) controlled by soil strength, intermediate slip (i similar to 0.3-0.6) controlled by residual soil strength, and high slip (i similar to 0.3-0.6) controlled by residual soil strength and wheel sinkage depth. Equilibrium sinkage occurred for i < 0.9, but continuously increased for i = 0.99. Improved DEM simulation accuracy of low-slip mobility can be achieved using polyhedral particles, rather than tri-sphere particles, to represent soil. The DEM simulations of MER wheel mobility can improve ARTEMIS accuracy. (C) 2015 The Authors. Published by Elsevier Ltd. on behalf of ISTVS.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 37 条
[1]  
[Anonymous], LUN PLAN I SCI C LUN
[2]  
[Anonymous], J GEOPHYS RES
[3]  
[Anonymous], ASCE J AEROS ENG
[4]  
[Anonymous], P 17 INT C ISTVS BLA
[5]   Terrain physical properties derived from orbital data and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crater [J].
Arvidson, R. E. ;
Bellutta, P. ;
Calef, F. ;
Fraeman, A. A. ;
Garvin, J. B. ;
Gasnault, O. ;
Grant, J. A. ;
Grotzinger, J. P. ;
Hamilton, V. E. ;
Heverly, M. ;
Iagnemma, K. A. ;
Johnson, J. R. ;
Lanza, N. ;
Le Mouelic, S. ;
Mangold, N. ;
Ming, D. W. ;
Mehta, M. ;
Morris, R. V. ;
Newsom, H. E. ;
Renno, N. ;
Rubin, D. ;
Schieber, J. ;
Sletten, R. ;
Stein, N. T. ;
Thuillier, F. ;
Vasavada, A. R. ;
Vizcaino, J. ;
Wiens, R. C. .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2014, 119 (06) :1322-1344
[6]   Ancient Aqueous Environments at Endeavour Crater, Mars [J].
Arvidson, R. E. ;
Squyres, S. W. ;
Bell, J. F., III ;
Catalano, J. G. ;
Clark, B. C. ;
Crumpler, L. S. ;
de Souza, P. A., Jr. ;
Fairen, A. G. ;
Farrand, W. H. ;
Fox, V. K. ;
Gellert, R. ;
Ghosh, A. ;
Golombek, M. P. ;
Grotzinger, J. P. ;
Guinness, E. A. ;
Herkenhoff, K. E. ;
Jolliff, B. L. ;
Knoll, A. H. ;
Li, R. ;
McLennan, S. M. ;
Ming, D. W. ;
Mittlefehldt, D. W. ;
Moore, J. M. ;
Morris, R. V. ;
Murchie, S. L. ;
Parker, T. J. ;
Paulsen, G. ;
Rice, J. W. ;
Ruff, S. W. ;
Smith, M. D. ;
Wolff, M. J. .
SCIENCE, 2014, 343 (6169)
[7]  
Arvidson R.E., 2011, J GEOPHYS RES, V116, P33
[8]  
Bekker M., 1969, Introduction to Terrain-vehicle Systems
[9]   A correlation between friction angle and particle shape metrics in Quaternary coarse alluvia [J].
Cheshomi, A. ;
Fakher, A. ;
Jones, C. J. F. P. .
QUARTERLY JOURNAL OF ENGINEERING GEOLOGY AND HYDROGEOLOGY, 2009, 42 :145-155
[10]   Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands [J].
Cho, GC ;
Dodds, J ;
Santamarina, JC .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2006, 132 (05) :591-602