A NEW HETEROGENEOUS MULTISCALE METHOD FOR TIME-HARMONIC MAXWELL'S EQUATIONS

被引:22
作者
Henning, Patrick [1 ]
Ohlberger, Mario [2 ]
Verfuerth, Barbara [2 ]
机构
[1] Kungliga Tekn Hogeskolan, Div Numer Anal, Math, S-10044 Stockholm, Sweden
[2] Westfal Wilhelms Univ Munster, Inst Numer & Angew Math, D-48149 Munster, Germany
关键词
multiscale method; finite elements; Maxwell's equations; homogenization; two-scale convergence; FINITE-ELEMENT-METHOD; GENERIC GRID INTERFACE; WAVE-PROPAGATION; HOMOGENIZATION; APPROXIMATION; PARALLEL; FIELDS;
D O I
10.1137/15M1039225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we suggest a new heterogeneous multiscale method (HMM) for the time-harmonic Maxwell equations in locally periodic media. The method is constructed by using a divergence-regularization in one of the cell problems. This allows us to introduce fine-scale correctors that are not subject to a cumbersome divergence-free constraint and which can hence easily be implemented. To analyze the method, we first revisit classical homogenization theory for time-harmonic Maxwell equations and derive a new homogenization result that makes use of the divergence-regularization in the two-scale homogenized equation. We then show that the HMM is equivalent to a discretization of this equation. In particular, writing both problems in a fully coupled two-scale formulation is the crucial starting point for a corresponding numerical analysis of the method. With this approach we are able to prove rigorous a priori error estimates in the H(curl)- and the H-1-norm, and we derive reliable and efficient localized residual-based a posteriori error estimates. Numerical experiments are presented to verify the a priori convergence results.
引用
收藏
页码:3493 / 3522
页数:30
相关论文
共 47 条
[1]   On a priori error analysis of fully discrete heterogeneous multiscale FEM [J].
Abdulle, A .
MULTISCALE MODELING & SIMULATION, 2005, 4 (02) :447-459
[2]   FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR THE WAVE EQUATION: LONG-TIME EFFECTS [J].
Abdulle, Assyr ;
Grote, Marcus J. ;
Stohrer, Christian .
MULTISCALE MODELING & SIMULATION, 2014, 12 (03) :1230-1257
[3]   FINITE ELEMENT HETEROGENEOUS MULTISCALE METHOD FOR THE WAVE EQUATION [J].
Abdulle, Assyr ;
Grote, Marcus J. .
MULTISCALE MODELING & SIMULATION, 2011, 9 (02) :766-792
[4]   HOMOGENIZATION AND 2-SCALE CONVERGENCE [J].
ALLAIRE, G .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (06) :1482-1518
[5]   Homogenization of time harmonic Maxwell equations and the frequency dispersion effect [J].
Amirat, Youcef ;
Shelukhin, Vladimir .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (04) :420-443
[6]  
[Anonymous], 2003, Numer. Math. Sci. Comput
[7]   ANALYSIS OF HETEROGENEOUS MULTISCALE METHODS FOR LONG TIME WAVE PROPAGATION PROBLEMS [J].
Arjmand, Doghonay ;
Runborg, Olof .
MULTISCALE MODELING & SIMULATION, 2014, 12 (03) :1135-1166
[8]   ERROR-BOUNDS FOR FINITE ELEMENT METHOD [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :322-&
[9]   A generic grid interface for parallel and adaptive scientific computing.: Part I:: abstract framework [J].
Bastian, P. ;
Blatt, M. ;
Dedner, A. ;
Engwer, C. ;
Kloefkorn, R. ;
Ohlberger, M. ;
Sander, O. .
COMPUTING, 2008, 82 (2-3) :103-119
[10]   Residual based a posteriori error estimators for eddy current computation [J].
Beck, R ;
Hiptmair, R ;
Hoppe, RHW ;
Wohlmuth, B .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (01) :159-182