Preparation of nanosheet Fe-ZSM-5 catalysts, and effect of Fe content on acidity, water, and sulfur resistance in the selective catalytic reduction of NO x by ammonia

被引:22
作者
Ma, Luoning [1 ]
Qu, Hongxia [1 ]
Zhang, Jie [1 ]
Tang, Qisheng [1 ]
Zhang, Shule [1 ]
Zhong, Qin [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe-ZSM-5; catalysts; Nanosheets; SCR; NOx; Water and sulfur resistance; NITRIC-OXIDE; ZEOLITE; NH3; TEMPERATURE; OXIDATION; FEZSM-5; MFI; NITROGEN; SITES; N2O;
D O I
10.1007/s11164-012-0927-9
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Direct synthesis of nanosheet Fe-ZSM-5 catalysts and their use for selective catalytic reduction (SCR) of NO (x) by ammonia were studied. XRD, BET, SEM, EPR, and NH3-TPD were used to understand the properties of catalysts with different iron loading. XRD confirmed the presence of the ZSM-5 crystal phase, and there was no Fe2O3 phase on the surface of the crystals. SEM showed the Fe-ZSM-5 catalysts comprised microspheres made up of nanosheets. EPR indicated that the iron was present as isolated Fe(3+)and FeO (x) oligomers uniformly dispersed throughout the crystals. NH3-TPD indicated that Fe-ZSM-5 (20,1:1) had maximum acid sites and density at approximately 250 and 450 A degrees C, respectively. Fe-ZSM-5 (20,1:1) had the highest activity in the SCR reaction with NH3. It was also confirmed that Fe-ZSM-5 (20,1:1) had excellent resistance to SO2 and H2O under the SCR reaction conditions. The effects of water vapor and SO2, iron loading, and the Si/(Fe + Al) ratio were also investigated for these catalysts.
引用
收藏
页码:4109 / 4120
页数:12
相关论文
共 29 条
[1]   The role of Al and strong acidity in the selective catalytic oxidation of NH3 over Fe-ZSM-5 [J].
Akah, Aaron C. ;
Nkeng, George ;
Garforth, Arthur A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2007, 74 (1-2) :34-39
[2]   Oxidative dehydrogenation of propane with N2O over Fe-ZSM-5 and Fe-SiO2: Influence of the iron species and acid sites [J].
Ates, Ayten ;
Hardacre, Christopher ;
Goguet, Alexandre .
APPLIED CATALYSIS A-GENERAL, 2012, 441 :30-41
[3]   Reduction of NOx over various Fe/zeolite catalysts [J].
Chen, HY ;
Wang, X ;
Sachtler, WMH .
APPLIED CATALYSIS A-GENERAL, 2000, 194 :159-168
[4]   Activity and durability of Fe/ZSM-5 catalysts for lean burn NOx reduction in the presence of water vapor [J].
Chen, HY ;
Sachtler, WMH .
CATALYSIS TODAY, 1998, 42 (1-2) :73-83
[5]   Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates [J].
Cho, Hae Sung ;
Ryoo, Ryong .
MICROPOROUS AND MESOPOROUS MATERIALS, 2012, 151 :107-112
[6]   Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts [J].
Choi, Minkee ;
Na, Kyungsu ;
Kim, Jeongnam ;
Sakamoto, Yasuhiro ;
Terasaki, Osamu ;
Ryoo, Ryong .
NATURE, 2009, 461 (7261) :246-U120
[7]   FeZSM-5: A durable SCR catalyst for NOx removal from combustion streams [J].
Feng, XB ;
Hall, WK .
JOURNAL OF CATALYSIS, 1997, 166 (02) :368-376
[8]   On the unusual stability of overexchanged FeZSM-5 [J].
Feng, XB ;
Hall, WK .
CATALYSIS LETTERS, 1996, 41 (1-2) :45-46
[9]   Problems in preparation of FeZSM-5 catalysts [J].
Hall, WK ;
Feng, XB ;
Dumesic, J ;
Watwe, R .
CATALYSIS LETTERS, 1998, 52 (1-2) :13-19
[10]   Kinetics of selective catalytic reduction of NO with NH3 on Fe-ZSM-5 catalyst [J].
Huang, HY ;
Long, RQ ;
Yang, RT .
APPLIED CATALYSIS A-GENERAL, 2002, 235 (1-2) :241-251