Can Generative Adversarial Networks help to overcome the limited data problem in segmentation

被引:12
作者
Heilemann, Gerd [1 ,2 ]
Matthewman, Mark [3 ]
Kuess, Peter [1 ,2 ]
Goldner, Gregor [1 ,2 ]
Widder, Joachim [1 ,2 ]
Georg, Dietmar [1 ,2 ]
Zimmermann, Lukas [1 ,4 ,5 ]
机构
[1] Med Univ Vienna, Dept Radiat Oncol, Vienna, Austria
[2] Med Univ Vienna, Comprehens Canc Ctr, Vienna, Austria
[3] Vienna Univ Technol, Vienna, Austria
[4] Univ Appl Sci Wiener Neustadt, Competence Ctr Preclin Imaging & Biomed Engn, Wiener Neustadt, Austria
[5] Univ Appl Sci Wiener Neustadt, Fac Engn, Wiener Neustadt, Austria
来源
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK | 2022年 / 32卷 / 03期
关键词
Automatic segmentation; Deep learning; Prostate cancer; Generative adversarial networks; AUTO-SEGMENTATION; RADIOTHERAPY; ORGANS; HEAD; RISK;
D O I
10.1016/j.zemedi.2021.11.006
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: For image translational tasks, the application of deep learning methods showed that Generative Adversarial Network (GAN) architectures outperform the traditional U-Net networks, when using the same training data size. This study investigates whether this performance boost can also be expected for segmentation tasks with small training dataset size. Materials/Methods: Two models were trained on varying training dataset sizes ranging from 1-100 patients: a) U-Net and b) U-Net with patch discriminator (conditional GAN). The performance of both models to segment the male pelvis on CT-data was evaluated (Dice similarity coefficient, Hausdorff) with respect to training data size. Results: No significant differences were observed between the U-Net and cGAN when the models were trained with the same training sizes up to 100 patients. The training dataset size had a significant impact on the models' performances, with vast improvements when increasing dataset sizes from 1 to 20 patients.Conclusion: When introducing GANs for the segmentation task no significant performance boost was observed in our experiments, even in segmentation models developed on small datasets.
引用
收藏
页码:361 / 368
页数:8
相关论文
共 40 条
[1]  
Balagopal A, 2018, ARXIV
[2]   Generation of annotated multimodal ground truth datasets for abdominal medical image registration [J].
Bauer, Dominik F. ;
Russ, Tom ;
Waldkirch, Barbara, I ;
Toennes, Christian ;
Segars, William P. ;
Schad, Lothar R. ;
Zoellner, Frank G. ;
Golla, Alena-Kathrin .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (08) :1277-1285
[3]   Automatic multiorgan segmentation in thorax CT images using U-net-GAN [J].
Dong, Xue ;
Lei, Yang ;
Wang, Tonghe ;
Thomas, Matthew ;
Tang, Leonardo ;
Curran, Walter J. ;
Liu, Tian ;
Yang, Xiaofeng .
MEDICAL PHYSICS, 2019, 46 (05) :2157-2168
[4]   Deep learning-based auto-segmentation of targets and organs-at-risk for magnetic resonance imaging only planning of prostate radiotherapy [J].
Elguindi, Sharif ;
Zelefsky, Michael J. ;
Jiang, Jue ;
Veeraraghavan, Harini ;
Deasy, Joseph O. ;
Hunt, Margie A. ;
Tyagi, Neelam .
PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2019, 12 :80-86
[5]   Latent space manipulation for high-resolution medical image synthesis via the StyleGAN [J].
Fetty, Lukas ;
Bylund, Mikael ;
Kuess, Peter ;
Heilemann, Gerd ;
Nyholm, Tufve ;
Georg, Dietmar ;
Lofstedt, Tommy .
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2020, 30 (04) :305-314
[6]   Pelvic multi-organ segmentation on cone-beam CT for prostate adaptive radiotherapy [J].
Fu, Yabo ;
Lei, Yang ;
Wang, Tonghe ;
Tian, Sibo ;
Patel, Pretesh ;
Jani, Ashesh B. ;
Curran, Walter J. ;
Liu, Tian ;
Yang, Xiaofeng .
MEDICAL PHYSICS, 2020, 47 (08) :3415-3422
[7]   Convolutional Neural Network Ensemble Segmentation With Ratio-Based Sampling for the Arteries and Veins in Abdominal CT Scans [J].
Golla, Alena-Kathrin ;
Bauer, Dominik F. ;
Schmidt, Ralf ;
Russ, Tom ;
Norenberg, Dominik ;
Chung, Khanlian ;
Toennes, Christian ;
Schad, Lothar R. ;
Zoellner, Frank G. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (05) :1518-1526
[8]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[9]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034
[10]   nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Kohl, Simon A. A. ;
Petersen, Jens ;
Maier-Hein, Klaus H. .
NATURE METHODS, 2021, 18 (02) :203-+