AC phase sensing of graphene FETs for chemical vapors with fast recovery and minimal baseline drift

被引:36
作者
Liu, Huiliang [1 ,2 ]
Liu, Yumeng [2 ]
Chu, Yao [1 ,2 ]
Hayasaka, Takeshi [2 ]
Joshi, Nirav [2 ]
Cui, Yong [2 ]
Wang, Xiaohao [1 ]
You, Zheng [1 ]
Lin, Liwei [1 ,2 ]
机构
[1] Tsinghua Berkeley Shenzhen Inst, Shenzhen, Peoples R China
[2] Univ Calif Berkeley, Berkeley Sensor & Actuator Ctr, Berkeley, CA 94720 USA
关键词
CVD graphene; Graphene FET; Chemical vapor; Room temperature; AC phase; DEFECTS;
D O I
10.1016/j.snb.2018.01.244
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This work utilizes an AC phase sensing approach of chemical vapors to achieve minimal baseline drift and fast recovery on graphene-based field effect transistors (FETs). Phase lag signals between channel resistance and gate voltage are detected with ultrafast recovery speed (similar to 10 s) on defect-rich FETs made of chemical vapor deposition (CVD) graphene as the channel materials without surface functionalization at room temperature. The responses of the phase change upon exposure to water, methanol and ethanol vapors show at least ten times faster recovery speed than those of the conventional DC resistance measurements with minimal baseline drift, large dynamic range, and good stability. The effects of relative humidity on methanol and ethanol gas response properties are also studied. As such, the AC phase sensing scheme could open up a new class of research in gas sensors for improved sensing speed and baseline stability. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 102
页数:9
相关论文
共 31 条
[1]   Recent Advances in Two-Dimensional Materials beyond Graphene [J].
Bhimanapati, Ganesh R. ;
Lin, Zhong ;
Meunier, Vincent ;
Jung, Yeonwoong ;
Cha, Judy ;
Das, Saptarshi ;
Xiao, Di ;
Son, Youngwoo ;
Strano, Michael S. ;
Cooper, Valentino R. ;
Liang, Liangbo ;
Louie, Steven G. ;
Ringe, Emilie ;
Zhou, Wu ;
Kim, Steve S. ;
Naik, Rajesh R. ;
Sumpter, Bobby G. ;
Terrones, Humberto ;
Xia, Fengnian ;
Wang, Yeliang ;
Zhu, Jun ;
Akinwande, Deji ;
Alem, Nasim ;
Schuller, Jon A. ;
Schaak, Raymond E. ;
Terrones, Mauricio ;
Robinson, Joshua A. .
ACS NANO, 2015, 9 (12) :11509-11539
[2]   SURFACE STUDIES BY SCANNING TUNNELING MICROSCOPY [J].
BINNING, G ;
ROHRER, H ;
GERBER, C ;
WEIBEL, E .
PHYSICAL REVIEW LETTERS, 1982, 49 (01) :57-61
[3]   Elucidating Capacitance and Resistance Terms in Confined Electroactive Molecular Layers [J].
Bueno, Paulo R. ;
Fabregat-Santiago, Francisco ;
Davis, Jason J. .
ANALYTICAL CHEMISTRY, 2013, 85 (01) :411-417
[4]   Oxygen sensors made by monolayer graphene under room temperature [J].
Chen, C. W. ;
Hung, S. C. ;
Yang, M. D. ;
Yeh, C. W. ;
Wu, C. H. ;
Chi, G. C. ;
Ren, F. ;
Pearton, S. J. .
APPLIED PHYSICS LETTERS, 2011, 99 (24)
[5]   Sub-ppt gas detection with pristine graphene [J].
Chen, Gugang ;
Paronyan, Tereza M. ;
Harutyunyan, Avetik R. .
APPLIED PHYSICS LETTERS, 2012, 101 (05)
[6]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[7]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209
[8]   Flexible and Transparent Gas Molecule Sensor Integrated with Sensing and Heating Graphene Layers [J].
Choi, Hongkyw ;
Choi, Jin Sik ;
Kim, Jin-Soo ;
Choe, Jong-Ho ;
Chung, Kwang Hyo ;
Shin, Jin-Wook ;
Kim, Jin Tae ;
Youn, Doo-Hyeb ;
Kim, Ki-Chul ;
Lee, Jeong-Ik ;
Choi, Sung-Yool ;
Kim, Philip ;
Choi, Choon-Gi ;
Yu, Young-Jun .
SMALL, 2014, 10 (18) :3685-3691
[9]  
Crowley JosephM., 2008, Proceedings of the ESA Annual Meeting on Electrostatics, page, P1
[10]   Intrinsic Response of Graphene Vapor Sensors [J].
Dan, Yaping ;
Lu, Ye ;
Kybert, Nicholas J. ;
Luo, Zhengtang ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (04) :1472-1475