Complete spacelike hypersurfaces in a de Sitter space

被引:0
作者
Shu, SC [1 ]
机构
[1] Xianyang Teachers Univ, Dept Math, Xianyang 712000, Shaanxi, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterise the n-dimensional (n >= 3) complete spacelike hypersurfaces M-n in a de Sitter space S-1(n+1) with constant scalar curvature and with two distinct principal curvatures. We show that if the multiplicities of such principal curvatures are greater than 1, then M-n is isometric to H-k(sinh r) x Sn-k(cosh r), 1 < k < n - 1. In particular, when M-n is the complete spacelike hypersurfaces in S-1(n+1) with the scalar curvature and the mean curvature being linearly related, we also obtain a characteristic Theorem of such hypersurfaces.
引用
收藏
页码:9 / 16
页数:8
相关论文
共 50 条
[21]   Rigidity theorems for complete spacelike hypersurfaces with constant scalar curvature in De Sitter space [J].
Camargo, F. E. C. ;
Chaves, R. M. B. ;
Sousa, L. A. M., Jr. .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (06) :592-599
[22]   Uniqueness and nullity of complete spacelike hypersurfaces immersed in the anti-de Sitter space [J].
Barboza W.F.C. ;
de Lima H.F. ;
Velásquez M.A.L. .
ANNALI DELL'UNIVERSITA' DI FERRARA, 2023, 69 (1) :95-109
[23]   Slant geometry of spacelike hypersurfaces in hyperbolic space and de Sitter space [J].
Asayama, Mikuri ;
Izumiya, Shyuichi ;
Tamaoki, Aiko ;
Yildirim, Handan .
REVISTA MATEMATICA IBEROAMERICANA, 2012, 28 (02) :371-400
[24]   On the Ricci curvature of compact spacelike hypersurfaces in de Sitter space [J].
Alías, LJ .
GEOMETRIAE DEDICATA, 1999, 77 (03) :297-304
[25]   LIGHTLIKE HYPERSURFACES ALONG SPACELIKE SUBMANIFOLDS IN DE SITTER SPACE [J].
Izumiya, Shyuichi ;
Sato, Takami .
JOURNAL OF SINGULARITIES, 2014, 10 :157-173
[26]   CONVEX SPACELIKE HYPERSURFACES OF CONSTANT CURVATURE IN DE SITTER SPACE [J].
Spruck, Joel ;
Xiao, Ling .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (06) :2225-2242
[27]   On the Ricci Curvature of Compact Spacelike Hypersurfaces in de Sitter Space [J].
Luis J. Alías .
Geometriae Dedicata, 1999, 77 :297-304
[28]   On the geometry of linear Weingarten spacelike hypersurfaces in the de Sitter space [J].
de Lima, Henrique F. ;
Velasquez, Marco A. L. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (01) :49-65
[29]   Curvature properties of compact spacelike hypersurfaces in de Sitter space [J].
Aledo, JA ;
Alías, LJ .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2001, 14 (02) :137-149
[30]   Evolutes of spacelike hypersurfaces in anti-de Sitter space [J].
Sato, Takami .
JOURNAL OF GEOMETRY AND PHYSICS, 2014, 76 :200-216