Modular analogues of Jordan's theorem for finite linear groups

被引:12
作者
Collins, Michael J. [1 ]
机构
[1] Univ Coll, Oxford OX1 4BH, England
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2008年 / 624卷
关键词
D O I
10.1515/CRELLE.2008.084
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1878, Jordan [9] showed that a finite subgroup of GL(n, C) contains an abelian normal subgroup whose index is bounded by a function of n alone. Previously, the author has given precise bounds [4]. Here, we consider analogues for finite linear groups over algebraically closed fields of positive characteristic l. A larger normal subgroup must be taken, to eliminate unipotent subgroups and groups of Lie type and characteristic l, and we show that generically the bound is similar to that in characteristic 0-being (n + 1)!, or (n + 2)! when l divides n + 2-given by the faithful representations of minimal degree of the symmetric groups. A complete answer for the optimal bounds is given for all degrees n and every characteristic l.
引用
收藏
页码:143 / 171
页数:29
相关论文
共 15 条
[1]  
Aschbacher M., 2000, FINITE GROUP THEORY
[2]   AN ANALOGUE OF JORDANS THEOREM IN CHARACTERISTIC P [J].
BRAUER, R ;
FEIT, W .
ANNALS OF MATHEMATICS, 1966, 84 (01) :119-&
[3]   Bounds for finite primitive complex linear groups [J].
Collins, Michael J. .
JOURNAL OF ALGEBRA, 2008, 319 (02) :759-776
[4]   On Jordan's theorem for complex linear groups [J].
Collins, Michael J. .
JOURNAL OF GROUP THEORY, 2007, 10 (04) :411-423
[5]   Representations of the general symmetric group as linear groups in finite and infinite fields [J].
Dickson, Leonard Eugene .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1908, 9 (1-4) :121-148
[6]  
JANSEN C, MINIMAL DEGREES FAIT
[7]  
Jansen C., 1995, An Atlas of Brauer Characters
[8]  
Jordan M. C., 1878, J. Reine Angew. Math., V84, P89
[9]  
LARSEN M., FINITE SUBGROUPS ALG
[10]  
Steinberg R., 1962, C THEOR GROUP ALG BR, P113