Endemic-epidemic models to understand COVID-19 spatio-temporal evolution

被引:16
作者
Celani, Alessandro [1 ]
Giudici, Paolo [2 ]
机构
[1] Polytech Univ Marche, Dipartimento Sci Econ & Sociali, Piazzale Raffaele Martelli 8, I-60121 Ancona, Italy
[2] Univ Pavia, Dipartimento Sci Econ & Aziendali, Via San Felice Al Monastero 5, I-27100 Pavia, Italy
关键词
Contagion models; Multivariate statistics; COVID-19; Poisson processes; Spatio-temporal models;
D O I
10.1016/j.spasta.2021.100528
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We propose an endemic-epidemic model: a negative binomial space-time autoregression, which can be employed to monitor the contagion dynamics of the COVID-19 pandemic, both in time and in space. The model is exemplified through an empirical analysis of the provinces of northern Italy, heavily affected by the pandemic and characterized by similar non-pharmaceutical policy interventions. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
[31]   Layered vaccine allocation for spatio-temporal vaccination of COVID-19 [J].
Ghazal, I ;
Rachadi, A. ;
Ez-Zahraouy, H. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2023, 34 (04)
[32]   Exploring the spatio-temporal evolution of economic resilience in Chinese cities during the COVID-19 crisis [J].
Cheng, Tong ;
Zhao, Yonghua ;
Zhao, Chunjiang .
SUSTAINABLE CITIES AND SOCIETY, 2022, 84
[33]   Investigating the effects of ICT evolution and the COVID-19 pandemic on the spatio-temporal fragmentation of work activities [J].
Cheng, Yu-Tong ;
Lavieri, Patricia S. ;
de Sa, Ana Luiza Santos ;
Astroza, Sebastian .
TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2024, 187
[34]   Application of Hidden Markov Models to Analyze, Group and Visualize Spatio-Temporal COVID-19 Data [J].
Zhou, Shanglin ;
Braca, Paolo ;
Marano, Stefano ;
Willett, Peter ;
Millefiori, Leonardo M. ;
Gaglione, Domenico ;
Pattipati, Krishna R. .
IEEE ACCESS, 2021, 9 :134384-134401
[35]   Simulation and forecasting models of COVID-19 taking into account spatio-temporal dynamic characteristics: A review [J].
Wang, Peipei ;
Zheng, Xinqi ;
Liu, Haiyan .
FRONTIERS IN PUBLIC HEALTH, 2022, 10
[36]   Nonnegative Matrix Factorization to Understand Spatio-Temporal Traffic Pattern Variations During COVID-19: A Case Study [J].
Balasubramaniam, Anandkumar ;
Balasubramaniam, Thirunavukarasu ;
Jeyaraj, Rathinaraja ;
Paul, Anand ;
Nayak, Richi .
DATA MINING, AUSDM 2021, 2021, 1504 :223-234
[37]   Spatio-temporal variations of night-time lights at early stages of the COVID-19 epidemic in the United States [J].
Xu G. ;
Wang C. ;
Meng Q. ;
Xiu T. ;
Li X. .
National Remote Sensing Bulletin, 2022, 26 (09) :1777-1788
[38]   A multivariate spatio-temporal model for the incidence of imported COVID-19 cases and COVID-19 deaths in Cuba [J].
De Witte, Dries ;
Abad, Ariel Alonso ;
Molenberghs, Geert ;
Verbeke, Geert ;
Sanchez, Lizet ;
Mas-Bermejo, Pedro ;
Neyens, Thomas .
SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2023, 45
[39]   Spatio-temporal approach for classification of COVID-19 pandemic fake news [J].
I. Y. Agarwal ;
D. P. Rana ;
M. Shaikh ;
S. Poudel .
Social Network Analysis and Mining, 2022, 12
[40]   Spatio-Temporal Sentiment Mining of COVID-19 Arabic Social Media [J].
Elsaka, Tarek ;
Afyouni, Imad ;
Hashem, Ibrahim ;
Al Aghbari, Zaher .
ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (09)