Endemic-epidemic models to understand COVID-19 spatio-temporal evolution

被引:16
作者
Celani, Alessandro [1 ]
Giudici, Paolo [2 ]
机构
[1] Polytech Univ Marche, Dipartimento Sci Econ & Sociali, Piazzale Raffaele Martelli 8, I-60121 Ancona, Italy
[2] Univ Pavia, Dipartimento Sci Econ & Aziendali, Via San Felice Al Monastero 5, I-27100 Pavia, Italy
关键词
Contagion models; Multivariate statistics; COVID-19; Poisson processes; Spatio-temporal models;
D O I
10.1016/j.spasta.2021.100528
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We propose an endemic-epidemic model: a negative binomial space-time autoregression, which can be employed to monitor the contagion dynamics of the COVID-19 pandemic, both in time and in space. The model is exemplified through an empirical analysis of the provinces of northern Italy, heavily affected by the pandemic and characterized by similar non-pharmaceutical policy interventions. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 32 条
[11]   Predictive Model Assessment for Count Data [J].
Czado, Claudia ;
Gneiting, Tilmann ;
Held, Leonhard .
BIOMETRICS, 2009, 65 (04) :1254-1261
[12]   An interactive web-based dashboard to track COVID-19 in real time [J].
Dong, Ensheng ;
Du, Hongru ;
Gardner, Lauren .
LANCET INFECTIOUS DISEASES, 2020, 20 (05) :533-534
[13]   An ensemble approach to short-term forecast of COVID-19 intensive care occupancy in Italian regions [J].
Farcomeni, Alessio ;
Maruotti, Antonello ;
Divino, Fabio ;
Jona-Lasinio, Giovanna ;
Lovison, Gianfranco .
BIOMETRICAL JOURNAL, 2021, 63 (03) :503-513
[14]   Integer-valued GARCH process [J].
Ferland, Rene ;
Latour, Alain ;
Oraichi, Driss .
JOURNAL OF TIME SERIES ANALYSIS, 2006, 27 (06) :923-942
[15]  
Fronterre C, 2020, MEDRXIV
[16]  
Girardi P, 2020, Arxiv, DOI arXiv:2004.03187
[17]   Mixtures of products of Dirichlet processes for variable selection in survival analysis [J].
Giudici, P ;
Mezzetti, M ;
Muliere, P .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 111 (1-2) :101-115
[18]  
Giudici P, 2000, STAT MED, V19, P2579, DOI 10.1002/1097-0258(20000915/30)19:17/18<2579::AID-SIM589>3.0.CO
[19]  
2-G
[20]   Modelling and predicting the spatio-temporal spread of cOVID-19 in Italy [J].
Giuliani, Diego ;
Dickson, Maria Michela ;
Espa, Giuseppe ;
Santi, Flavio .
BMC INFECTIOUS DISEASES, 2020, 20 (01)