Full counting statistics and the Edgeworth series for matrix product states

被引:13
|
作者
Shi, Yifei [1 ]
Klich, Israel [1 ]
机构
[1] Univ Virginia, Dept Phys, Charlottesville, VA 22904 USA
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2013年
基金
美国国家科学基金会;
关键词
solvable lattice models; mesoscopic systems (theory); spin chains; ladders and planes (theory); entanglement in extended quantum systems (theory); GROUND-STATES; QUANTUM;
D O I
10.1088/1742-5468/2013/05/P05001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We consider the full counting statistics of spin in matrix product states. In particular, we study the approach to a Gaussian distribution for magnetization. We derive the asymptotic corrections to the central limit theorem for magnetization distribution for finite but large blocks in analogy to the Edgeworth series. We also show how central limit theorem like behavior is modified for certain states with topological characteristics such as the AKLT
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Diagrammatics for SU(2) invariant matrix product states
    Fledderjohann, Andreas
    Kluemper, Andreas
    Muetter, Karl-Heinz
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (47)
  • [42] Fast Emulation of Fermionic Circuits with Matrix Product States
    Provazza, Justin
    Gunst, Klaas
    Zhai, Huanchen
    Chan, Garnet K. -L.
    Shiozaki, Toru
    Rubin, Nicholas C.
    White, Alec F.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (09) : 3719 - 3728
  • [43] Explainable natural language processing with matrix product states
    Tangpanitanon, Jirawat
    Mangkang, Chanatip
    Bhadola, Pradeep
    Minato, Yuichiro
    Angelakis, Dimitris G.
    Chotibut, Thiparat
    NEW JOURNAL OF PHYSICS, 2022, 24 (05):
  • [44] Integrable Matrix Product States from boundary integrability
    Pozsgay, Balazs
    Piroli, Lorenzo
    Vernier, Eric
    SCIPOST PHYSICS, 2019, 6 (05):
  • [45] Sample complexity of matrix product states at finite temperature
    Iwaki, Atsushi
    Hotta, Chisa
    PHYSICAL REVIEW B, 2024, 109 (22)
  • [46] Nonstabilizerness via Matrix Product States in the Pauli Basis
    Tarabunga, Poetri Sonya
    Tirrito, Emanuele
    Banuls, Mari Carmen
    Dalmonte, Marcello
    PHYSICAL REVIEW LETTERS, 2024, 133 (01)
  • [47] Matrix product states: Symmetries and two-body Hamiltonians
    Sanz, M.
    Wolf, M. M.
    Perez-Garcia, D.
    Cirac, J. I.
    PHYSICAL REVIEW A, 2009, 79 (04):
  • [48] Momentum-resolved time evolution with matrix product states
    Van Damme, Maarten
    Vanderstraeten, Laurens
    PHYSICAL REVIEW B, 2022, 105 (20)
  • [49] Finite Time Large Deviations via Matrix Product States
    Causer, Luke
    Banuls, Mari Carmen
    Garrahan, Juan P.
    PHYSICAL REVIEW LETTERS, 2022, 128 (09)
  • [50] Linking infinite bond-dimension matrix product states with frustration-free Hamiltonians
    Schossler, Matheus
    Chen, Li
    Seidel, Alexander
    PHYSICAL REVIEW B, 2024, 109 (08)