Surface Criticality at a Dynamic Phase Transition

被引:54
作者
Park, Hyunhang [1 ]
Pleimling, Michel [1 ]
机构
[1] Virginia Tech, Dept Phys, Blacksburg, VA 24060 USA
基金
美国国家科学基金会;
关键词
KINETIC ISING-MODEL; DIRECTED PERCOLATION; OSCILLATING FIELD; FERROMAGNETS; HYSTERESIS; SYSTEMS;
D O I
10.1103/PhysRevLett.109.175703
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In order to elucidate the role of surfaces at nonequilibrium phase transitions, we consider kinetic Ising models with surfaces subjected to a periodic oscillating magnetic field. Whereas, the corresponding bulk system undergoes a continuous nonequilibrium phase transition characterized by the exponents of the equilibrium Ising model, we find that the nonequilibrium surface exponents do not coincide with those of the equilibrium critical surface. In addition, in three space dimensions, the surface phase diagram of the nonequilibrium system differs markedly from that of the equilibrium system.
引用
收藏
页数:5
相关论文
共 38 条
  • [11] Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport
    Chou, T.
    Mallick, K.
    Zia, R. K. P.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (11)
  • [12] Diehl H. W., 1986, Phase Transitions and Critical Phenomena, V10
  • [13] Massive field-theory approach to surface critical behavior in three-dimensional systems
    Diehl, HW
    Shpot, M
    [J]. NUCLEAR PHYSICS B, 1998, 528 (03) : 595 - 647
  • [14] Directed percolation near a wall
    Essam, JW
    Guttmann, AJ
    Jensen, I
    TanlaKishani, D
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (08): : 1619 - 1628
  • [15] Directed percolation and other systems with absorbing states:: Impact of boundaries
    Fröjdh, P
    Howard, M
    Lauritsen, KB
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (12): : 1761 - 1797
  • [16] Dynamic phase transition in a time-dependent Ginzburg-Landau model in an oscillating field
    Fujisaka, H
    Tutu, H
    Rikvold, PA
    [J]. PHYSICAL REVIEW E, 2001, 63 (03):
  • [17] STATISTICAL-MECHANICS OF PROBABILISTIC CELLULAR AUTOMATA
    GRINSTEIN, G
    JAYAPRAKASH, C
    YU, H
    [J]. PHYSICAL REVIEW LETTERS, 1985, 55 (23) : 2527 - 2530
  • [18] THERMAL-CONDUCTIVITY OF A KINETIC ISING-MODEL
    HARRIS, R
    GRANT, M
    [J]. PHYSICAL REVIEW B, 1988, 38 (13): : 9323 - 9326
  • [19] Henkel M, 2008, THEOR MATH PHYS SER, P1
  • [20] Nonequilibrium phase transition in an exactly solvable driven Ising model with friction
    Hucht, Alfred
    [J]. PHYSICAL REVIEW E, 2009, 80 (06):