ANN-based real-time parameter optimization via GA for superheater model in power plant simulator

被引:3
作者
Ma, Jin [1 ]
Wang, Bing-Shu [1 ]
Ma, Yong-Guang [1 ]
机构
[1] N China Elect Power Univ, Sch Control Sci & Engn, Baoding 071003, Peoples R China
来源
PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7 | 2008年
关键词
ANN; GA; parameter optimization; real-time; superheater model; power plant simulator;
D O I
10.1109/ICMLC.2008.4620783
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In order to rapidly optimize superheater model parameters to achieve the required precision, ANN and GA are combined to solve the problem. Since the classic optimization methods are not appropriate for mechanism model in power plant simulator, GA is applied to optimize model parameters. Input data, output data of model and optimized parameters are normalized to make learning sample. After ANN is trained with back-propagation algorithm, it is able to optimize model parameters in real-time. Simulation result shows that superheater model optimized by this method achieves the required accuracy. The method replaces manual parameter regulation and shortens optimization time. It is a general method, provides a new way for parameter optimization for thermal equipment model in power plant simulator.
引用
收藏
页码:2269 / 2273
页数:5
相关论文
共 12 条
[1]  
BOOTH RC, 1998, DYN MOD CONTR APPL I, P1
[2]  
CERMAK P, 2004, FUZZY INFORM 2004 PR, V2, P762
[3]  
JOO J, 2005, COMP INT MOD CONTR A, V2, P117
[4]  
Liao Y., 2005, MACHINE LEARNING CYB, V7, P4023
[5]  
LIPINGKANG, 2002, POW SYST TECHN 2002, V1, P646
[6]  
MA YG, 2003, TECHNICAL SPECIFICAT
[7]  
Michalewicz Z, 1994, Genetic Algorithms + Data Structures = Evolution Programs
[8]  
SONG B, 1992, ANT PROP SOC INT S 1, V4, P2277
[9]  
TOPALOV AV, 1996, EVOLUTIONARY COM MAY, P649
[10]   Parameter optimization in complex industrial process control based on improved fuzzy-GA [J].
Wang, B ;
Wang, SA ;
Du, HF ;
Qu, PG .
2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, :2512-2515