SINGULAR POSITIVE RADIAL SOLUTIONS FOR A GENERAL SEMILINEAR ELLIPTIC EQUATION

被引:3
作者
Fen, Yang [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430081, Peoples R China
关键词
singular solution; decay; separation property; semilinear elliptic equation; ASYMPTOTIC-BEHAVIOR; INFINITE MULTIPLICITY; SEPARATION STRUCTURE; CAUCHY-PROBLEM; STEADY-STATES; EXISTENCE; STABILITY; PROPERTY;
D O I
10.1016/S0252-9602(12)60186-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existence and uniqueness of singular solutions decaying like r(-m) (see (1.4)) of the equation Delta u + Sigma(k)(i=1) c(i)vertical bar x vertical bar(li)u(pi) = 0, x is an element of R-n (0.1) are obtained, where n >= 3, c(i) > 0, > l(i) > -2, i = 1, 2, ... , k, p(i) > 1, i = 1, 2, ... , k and the separation structure of singular solutions decaying like r(-(n-2)) of eq. (0.1) are discussed. moreover, we obtain the explicit critical exponent p(s)(l) (see (1.9)).
引用
收藏
页码:2377 / 2387
页数:11
相关论文
共 25 条
[1]   Infinite multiplicity and separation structure of positive solutions for a semilinear elliptic equation in Rn [J].
Bae, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 200 (02) :274-311
[2]   Separation structure of positive radial solutions of a semilinear elliptic equation in Rn [J].
Bae, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (02) :460-499
[3]   Infinite multiplicity of positive entire solutions for a semilinear elliptic equation [J].
Bae, S ;
Chang, TK ;
Pahk, DH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 181 (02) :367-387
[4]   On a class of semilinear elliptic equations in Rn [J].
Bae, S ;
Chang, TK .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 185 (01) :225-250
[5]   Asymptotic behavior of positive solutions of inhomogeneous semilinear elliptic equations [J].
Bae, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (08) :1373-1403
[6]   Existence and infinite multiplicity for an inhomogeneous semilinear elliptic equation on Rn [J].
Bae, S ;
Ni, WM .
MATHEMATISCHE ANNALEN, 2001, 320 (01) :191-210
[7]   Asymptotic behavior of radial solutions for a class of semilinear elliptic equations [J].
Chen, SH ;
Lu, GZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 133 (02) :340-354
[8]  
Deng Y., 1997, Adv. Differ. Equ, V2, P361
[9]   On the existence of multiple positive solutions for a semilinear problem in exterior domains [J].
Deng, YB ;
Li, Y .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 181 (01) :197-229
[10]  
Deng YB, 2008, ACTA MATH SCI, V28, P348