Exact discrete soliton solutions and periodic solutions to (2+1)-dimensional Toda lattice with a new algebraic method

被引:0
作者
Wang Yi-Hong [1 ]
Wang Sheng-Kui [1 ]
机构
[1] Zhejiang Foresty Univ, Dept Math, Hangzhou 311300, Peoples R China
关键词
soliton solutions; periodic solutions; (2+1)-dimensional differential-difference system;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, with the aid of symbolic computation, we present a uniform method for constructing soliton solutions and periodic solutions to (2+1)-dimensional Toda lattice equation.
引用
收藏
页码:299 / 302
页数:4
相关论文
共 9 条
[1]  
ABLOWTIZ, 1997, STUD APPL MATH, V57, P1
[2]   Multi-component Volterra acid Toda type integrable equations [J].
Adler, VE ;
Svinolupov, SI ;
Yamilov, RI .
PHYSICS LETTERS A, 1999, 254 (1-2) :24-36
[3]   Symbolic computation of hyperbolic tangent solutions for nonlinear differential-difference equations [J].
Baldwin, D ;
Göktas, Ü ;
Hereman, W .
COMPUTER PHYSICS COMMUNICATIONS, 2004, 162 (03) :203-217
[4]   A new method for constructing soliton solutions and periodic solutions of nonlinear evolution equations [J].
Guo-Cheng, Wu ;
Tie-Cheng, Xia .
PHYSICS LETTERS A, 2008, 372 (05) :604-609
[5]   VIBRATION OF A CHAIN WITH NONLINEAR INTERACTION [J].
TODA, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1967, 22 (02) :431-&
[6]  
TODA M, 1976, SUPPL PROG THEOR PHY, V59, P1
[7]  
TODA M, 1988, THEORY NONLINEAR LAT
[8]  
WU GC, CHAOS SOLIT IN PRESS
[9]   A new method for solving nonlinear differential-difference equation [J].
Xie, FD ;
Wang, JQ .
CHAOS SOLITONS & FRACTALS, 2006, 27 (04) :1067-1071