An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions

被引:322
作者
Giles, D. M. [1 ,2 ,3 ]
Holben, B. N. [2 ]
Eck, T. F. [2 ,4 ]
Sinyuk, A. [1 ,2 ]
Smirnov, A. [1 ,2 ]
Slutsker, I. [1 ,2 ]
Dickerson, R. R. [3 ]
Thompson, A. M. [5 ]
Schafer, J. S. [1 ,2 ]
机构
[1] Sigma Space Corp, Lanham, MD 20706 USA
[2] NASA, Biospher Sci Lab, Goddard Space Flight Ctr, Greenbelt, MD USA
[3] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
[4] Univ Space Res Assoc, Columbia, MD USA
[5] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA
关键词
SKY RADIANCE MEASUREMENTS; OPTICAL-PROPERTIES; LIGHT-ABSORPTION; BLACK CARBON; WAVELENGTH DEPENDENCE; ANGSTROM EXPONENT; RADIATIVE IMPACT; IR WAVELENGTHS; BROWN CARBON; SAHARAN DUST;
D O I
10.1029/2012JD018127
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (T) and single scattering albedo (omega(o)) from Aerosol Robotic Network (AERONET) measurements are used to form absorption (i.e., omega(o) and absorption angstrom ngstrom exponent (alpha(abs))) and size (i.e., extinction angstrom ngstrom exponent (alpha(ext)) and fine mode fraction of T) relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to (1) determine the average omega(o) and alpha(abs) at each site (expanding upon previous work), (2) perform a sensitivity study on alpha(abs) by varying the spectral omega(o), and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega(o) averages indicate slightly more aerosol absorption (i.e., a 0.0 < delta omega(o) <= 0.02 decrease) than in previous work, and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(abs) show significant overlap among aerosol type categories, and at least 10% of the alpha(abs) retrievals in each category are below 1.0. Perturbing the spectral omega(o) by +/- 0.03 induces significant alpha(abs) changes from the unperturbed value by at least similar to +/- 0.6 for Dust, similar to +/- 0.2 for Mixed, and similar to +/- 0.1 for Urban/Industrial and Biomass Burning. The omega(o440nm) and alpha(ext440-870nm) relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface-and future space-based instrumentation.
引用
收藏
页数:16
相关论文
共 75 条
  • [1] THE PARAMETERS OF ATMOSPHERIC TURBIDITY
    ANGSTROM, A
    [J]. TELLUS, 1964, 16 (01): : 64 - 75
  • [2] Inferring absorbing organic carbon content from AERONET data
    Arola, A.
    Schuster, G.
    Myhre, G.
    Kazadzis, S.
    Dey, S.
    Tripathi, S. N.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (01) : 215 - 225
  • [3] Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations
    Basart, S.
    Perez, C.
    Cuevas, E.
    Baldasano, J. M.
    Gobbi, G. P.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (21) : 8265 - 8282
  • [4] Spectral absorption properties of atmospheric aerosols
    Bergstrom, R. W.
    Pilewskie, P.
    Russell, P. B.
    Redemann, J.
    Bond, T. C.
    Quinn, P. K.
    Sierau, B.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (23) : 5937 - 5943
  • [5] Bergstrom RW, 2002, J ATMOS SCI, V59, P567, DOI 10.1175/1520-0469(2002)059<0567:WDOTAO>2.0.CO
  • [6] 2
  • [7] Multi year sun-photometer measurements for aerosol characterization in a Central Mediterranean site
    Boselli, A.
    Caggiano, R.
    Cornacchia, C.
    Madonna, F.
    Mona, L.
    Macchiato, M.
    Pappalardo, G.
    Trippetta, S.
    [J]. ATMOSPHERIC RESEARCH, 2012, 104 : 98 - 110
  • [8] Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples
    Burton, S. P.
    Ferrare, R. A.
    Hostetler, C. A.
    Hair, J. W.
    Rogers, R. R.
    Obland, M. D.
    Butler, C. F.
    Cook, A. L.
    Harper, D. B.
    Froyd, K. D.
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2012, 5 (01) : 73 - 98
  • [9] Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations
    Cattrall, C
    Reagan, J
    Thome, K
    Dubovik, O
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D10) : 1 - 13
  • [10] The role of iron and black carbon in aerosol light absorption
    Derimian, Y.
    Karnieli, A.
    Kaufman, Y. J.
    Andreae, M. O.
    Andreae, T. W.
    Dubovik, O.
    Maenhaut, W.
    Koren, I.
    [J]. ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (13) : 3623 - 3637