Proper Orthogonal Decomposition for Model Reduction of a Vibroimpact System

被引:14
|
作者
Ritto, T. G. [1 ]
Buezas, F. S. [2 ]
Sampaio, Rubens [3 ]
机构
[1] Univ Fed Rio de Janeiro, Dept Mech Engn, BR-21941 Rio De Janeiro, RJ, Brazil
[2] Univ Nacl Sur, CONICET, Dept Fis, RA-8000 Bahia Blanca, Buenos Aires, Argentina
[3] Pontificia Univ Catolica Rio de Janeiro, Dept Mech Engn, Rio de Janeiro, Brazil
关键词
model reduction; proper orthogonal decomposition (POD); Karhunen-Loeve expansion; vibroimpact system; nonlinear dynamics; DYNAMICS; POD;
D O I
10.1590/S1678-58782012000300013
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The application that inspires this work is the percussion drilling. This problem has impacts and presents uncertainties. In this first analysis the focus is on the construction of an efficient reduced-order model to deal with the nonlinear dynamics due to the impacts. It is important to have an efficient reduced-order model to perform the stochastic analysis. The simplified full model is constructed using the finite element method, and three different bases are used to construct the reduced-order models: LIN-basis (composed by the normal modes of the associated linear problems), PODdir-basis (obtained through proper orthogonal decomposition - direct method) and PODsnap-basis (obtained through proper orthogonal decomposition - snapshot method). The shapes of the elements of LIN-basis, PODdir-basis, and PODsnap-basis are compared. One important conclusion is that the information necessary to represent the details of a vibroimpact dynamics, measured by the proper orthogonal values, is more than the usual 99% recommended.
引用
收藏
页码:330 / 340
页数:11
相关论文
共 50 条
  • [31] Model reduction applied to square to rectangular martensitic transformations using proper orthogonal decomposition
    Wang, L. X.
    Melnik, Roderick V. N.
    APPLIED NUMERICAL MATHEMATICS, 2007, 57 (5-7) : 510 - 520
  • [32] Model Order Reduction of Nonlinear Transmission Lines Using Interpolatory Proper Orthogonal Decomposition
    Nouri, Behzad
    Nakhla, Michel S.
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (12) : 5429 - 5438
  • [33] Proper Orthogonal Decomposition-Based Model Order Reduction of Delayed PEEC Models
    Khattak, Muhammad A.
    Romano, Daniele
    Antonini, Giulio
    Ferranti, Francesco
    2023 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, ICEAA, 2023, : 554 - 558
  • [34] Reduction of a Urea Crystallizer Model by Proper Orthogonal Decomposition and Best-Points Interpolation
    Krasnyk, Mykhaylo
    Mangold, Michael
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (20) : 9887 - 9898
  • [35] Model reduction in elastoplasticity: proper orthogonal decomposition combined with adaptive sub-structuring
    Radermacher, Annika
    Reese, Stefanie
    COMPUTATIONAL MECHANICS, 2014, 54 (03) : 677 - 687
  • [36] A scheme for comprehensive computational cost reduction in proper orthogonal decomposition
    Singh, Satyavir
    Bazaz, M. Abid
    Nahvi, Shahkar Ahmad
    JOURNAL OF ELECTRICAL ENGINEERING-ELEKTROTECHNICKY CASOPIS, 2018, 69 (04): : 279 - 285
  • [37] The utility of proper orthogonal decomposition for dimensionality reduction in behavior of concrete
    Manoj, A.
    Narayan, K. S. Babu
    COMPUTERS AND CONCRETE, 2021, 28 (02): : 129 - 136
  • [38] Use of proper orthogonal decomposition for the reduction of atmospheric chemical kinetics
    Sportisse, Bruno
    Djouad, Rafik
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D6)
  • [39] A constrained proper orthogonal decomposition model for upscaling permeability
    Onimisi, Temiloluwa Atinuke
    Lashore, Babatunde Oluwaseyi
    Akanji, Lateef T.
    Gomes, Jefferson Luis Melo de Almeida
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2023, 95 (06) : 899 - 916
  • [40] Proper Orthogonal Decomposition as Surrogate Model for Aerodynamic Optimization
    Dolci, Valentina
    Arina, Renzo
    INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2016, 2016