A Simple FEM for Multi-scale Problem

被引:0
作者
He, Wen-ming [1 ]
Lin, Changsheng [1 ]
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 325035, Zhejiang, Peoples R China
来源
MEMS, NANO AND SMART SYSTEMS, PTS 1-6 | 2012年 / 403-408卷
关键词
Multi-scale problem; Small periodic structure; Finite element method; Boundary layer;
D O I
10.4028/www.scientific.net/AMR.403-408.2950
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For the problem partial derivative/partial derivative x(1)(a(ij)(x/epsilon)(partial derivative u(epsilon)/partial derivative x(1)) = f(x), we present a multiscale FEM to solve it when Omega is a complete periodic structure. The algorithm holds two characteristics: First the strain exists good accuracy on boundary layer; Second the computer memory that it needs is independent of epsilon. We use numerical experiments to investigate our results.
引用
收藏
页码:2950 / 2952
页数:3
相关论文
共 3 条
[1]   A finite element method for elliptic problems with rapidly oscillating coefficients [J].
He, Wen-Ming ;
Cui, Jun-Zhi .
BIT NUMERICAL MATHEMATICS, 2007, 47 (01) :77-102
[2]   Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients [J].
Hou, TY ;
Wu, XH ;
Cai, ZQ .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :913-943
[3]  
Oleinik O.A., 2009, Mathematical Problems in Elasticity and Homogenization