In silico prediction of aqueous solubility

被引:86
|
作者
Dearden, John C. [1 ]
机构
[1] Liverpool John Moores Univ, Sch Pharm & Chem, Liverpool L3 3AF, Merseyside, England
关键词
aqueous solubility; drugs; prediction; QSPR; software;
D O I
10.1517/17460441.1.1.31
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The fundamentals of aqueous solubility, and the factors that affect it, are briefly outlined, followed by a short introduction to quantitative structure property relationships. Early (pre-1990) work on aqueous solubility prediction is summarised, and a more detailed presentation and critical discussion are given of the results of most, if not all, of those published in silico prediction studies from 1990 onwards that have used diverse training sets. A table is presented of a number of studies that have used a 21-compound test set of drugs and pesticides to validate their aqueous solubility models. Finally, the results are given of a test of 15 commercially available software programs for aqueous solubility prediction, using a test set of 122 drugs with accurately measured aqueous solubilities.
引用
收藏
页码:31 / 52
页数:22
相关论文
共 50 条
  • [31] Predicting aqueous solubility by QSPR modeling
    Meftahi, Nastaran
    Walker, Michael L.
    Smith, Brian J.
    JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2021, 106
  • [32] Prediction of the Aqueous Solubility Partition Coefficient of Polychlorinated Biphenyls by Using Artificial Neural Network Combined with Topological Index
    Jiao, Long
    2011 SECOND ETP/IITA CONFERENCE ON TELECOMMUNICATION AND INFORMATION (TEIN 2011), VOL 1, 2011, : 117 - 119
  • [33] In silico prediction of acyl glucuronide reactivity
    Tim Potter
    Richard Lewis
    Tim Luker
    Roger Bonnert
    Michael A. Bernstein
    Timothy N. Birkinshaw
    Stephen Thom
    Mark Wenlock
    Stuart Paine
    Journal of Computer-Aided Molecular Design, 2011, 25 : 997 - 1005
  • [34] New QSPR study for the prediction of aqueous solubility of drug-like compounds
    Duchowicz, Pablo R.
    Talevi, Alan
    Bruno-Blanch, Luis E.
    Castro, Eduardo A.
    BIOORGANIC & MEDICINAL CHEMISTRY, 2008, 16 (17) : 7944 - 7955
  • [35] Solubility prediction of polycyclic aromatic hydrocarbons in non-aqueous solvent mixtures
    Jouyban, Abolghasem
    Shayanfar, All
    Acree, William E., Jr.
    FLUID PHASE EQUILIBRIA, 2010, 293 (01) : 47 - 58
  • [36] Computational aqueous solubility prediction for drug-like compounds in congeneric series
    Du-Cuny, Lei
    Huwyler, Joerg
    Wiese, Michael
    Kansy, Manfred
    EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY, 2008, 43 (03) : 501 - 512
  • [37] Deep learning in pharmacy: The prediction of aqueous solubility based on deep belief network
    Li H.
    Yu L.
    Tian S.
    Li L.
    Wang M.
    Lu X.
    Automatic Control and Computer Sciences, 2017, 51 (2) : 97 - 107
  • [38] Improved Prediction of Aqueous Solubility of Novel Compounds by Going Deeper With Deep Learning
    Cui, Qiuji
    Lu, Shuai
    Ni, Bingwei
    Zeng, Xian
    Tan, Ying
    Chen, Ya Dong
    Zhao, Hongping
    FRONTIERS IN ONCOLOGY, 2020, 10
  • [39] Prediction of pH-dependent aqueous solubility of Histone Deacetylase (HDAC) inhibitors
    Kouskoumvekaki, I.
    Hansen, N. T.
    Bjorkling, F.
    Vadlamudi, S. M.
    Jonsdottir, S. O.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2008, 19 (1-2) : 167 - 177
  • [40] Solubility Prediction of Drugs in Mixed Solvents Using Partial Solubility Parameters
    Jouyban, Abolghasem
    Shayanfar, Ali
    Panahi-Azar, Vahid
    Soleymani, Jafar
    Yousefi, Behrooz H.
    Acree, William E., Jr.
    York, Peter
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2011, 100 (10) : 4368 - 4382