In silico prediction of aqueous solubility

被引:86
|
作者
Dearden, John C. [1 ]
机构
[1] Liverpool John Moores Univ, Sch Pharm & Chem, Liverpool L3 3AF, Merseyside, England
关键词
aqueous solubility; drugs; prediction; QSPR; software;
D O I
10.1517/17460441.1.1.31
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
The fundamentals of aqueous solubility, and the factors that affect it, are briefly outlined, followed by a short introduction to quantitative structure property relationships. Early (pre-1990) work on aqueous solubility prediction is summarised, and a more detailed presentation and critical discussion are given of the results of most, if not all, of those published in silico prediction studies from 1990 onwards that have used diverse training sets. A table is presented of a number of studies that have used a 21-compound test set of drugs and pesticides to validate their aqueous solubility models. Finally, the results are given of a test of 15 commercially available software programs for aqueous solubility prediction, using a test set of 122 drugs with accurately measured aqueous solubilities.
引用
收藏
页码:31 / 52
页数:22
相关论文
共 50 条
  • [1] In silico prediction of aqueous solubility – classification models
    C Kramer
    B Beck
    T Clark
    Chemistry Central Journal, 2 (Suppl 1)
  • [2] In silico Prediction of Aqueous Solubility: a Comparative Study of Local and Global Predictive Models
    Raevsky, Oleg A.
    Polianczyk, Daniel E.
    Grigorev, Veniamin Yu.
    Raevskaja, Olga E.
    Dearden, John C.
    MOLECULAR INFORMATICS, 2015, 34 (6-7) : 417 - 430
  • [3] Prediction of aqueous solubility of drugs and pesticides with COSMO-RS
    Klamt, A
    Eckert, F
    Hornig, M
    Beck, ME
    Bürger, T
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2002, 23 (02) : 275 - 281
  • [4] Prediction of aqueous solubility from SCRATCH
    Jain, Parijat
    Yalkowsky, Samuel H.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2010, 385 (1-2) : 1 - 5
  • [5] Prediction of aqueous solubility of organic compounds using a quantitative structure-property relationship
    Chen, XQ
    Cho, SJ
    Li, Y
    Venkatesh, S
    JOURNAL OF PHARMACEUTICAL SCIENCES, 2002, 91 (08) : 1838 - 1852
  • [6] On-the-fly selection of a training set for aqueous solubility prediction
    Zhang, Hongzhou
    Ando, Howard Y.
    Chen, Linna
    Lee, Pil H.
    MOLECULAR PHARMACEUTICS, 2007, 4 (04) : 489 - 497
  • [7] Aqueous Solubility Prediction: Do Crystal Lattice Interactions Help?
    Salahinejad, Maryam
    Le, Tu C.
    Winkler, David A.
    MOLECULAR PHARMACEUTICS, 2013, 10 (07) : 2757 - 2766
  • [8] ADME prediction with KNIME: In silico aqueous solubility consensus model based on supervised recursive random forest approaches
    Falcon-Cano, Gabriela
    Molina, Christophe
    Cabrera-Perez, Miguel Angel
    ADMET AND DMPK, 2020, 8 (03): : 251 - +
  • [9] QSPR prediction of aqueous solubility of drug-like organic compounds
    Ghasemi, Jahanbakhsh
    Saaidpour, Saadi
    CHEMICAL & PHARMACEUTICAL BULLETIN, 2007, 55 (04) : 669 - 674
  • [10] In silico prediction of acyl glucuronide reactivity
    Potter, Tim
    Lewis, Richard
    Luker, Tim
    Bonnert, Roger
    Bernstein, Michael A.
    Birkinshaw, Timothy N.
    Thom, Stephen
    Wenlock, Mark
    Paine, Stuart
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2011, 25 (11) : 997 - 1005