QCTFF: On the construction of a novel protein force field

被引:78
作者
Popelier, Paul L. A. [1 ,2 ]
机构
[1] Univ Manchester, MIB, Manchester M1 7DN, Lancs, England
[2] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
quantum chemical topology; force field design; potential energy types; multipole moment; quantum theory of atoms in molecules; Kriging; polarization; INTERACTING QUANTUM ATOMS; CHEMICAL TOPOLOGY; ENERGIES; MODEL;
D O I
10.1002/qua.24900
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this perspective, we explain the strategy behind QCTFF, the current name for a novel atomistic protein force field. The atoms are constructed using Quantum Chemical Topology (QCT). These topological atoms determine how a system's energy is partitioned. We give a brief account of the results hitherto obtained, and a glimpse of unpublished results. Combining this QCT partitioning with the universal quantum expression of energy, leads to four types of fundamental energy contributions. The first of these is intra-atomic and the remaining three interatomic: (i) atomic self-energy, (ii) Coulomb energy, (iii) exchange energy, and (iv) correlation energy. All structural and dynamic effects emerge from the interplay of these contributions. The machine learning method kriging captures well how they change in response to a change in nuclear configuration. Second, the Coulomb energy is represented by a converging multipolar series expansion when the nuclei are sufficiently far apart. (c) 2015 The Authors International Journal of Quantum Chemistry Published by Wiley Periodicals, Inc.
引用
收藏
页码:1005 / 1011
页数:7
相关论文
共 44 条
[1]   COVALENT BOND ORDERS AND ATOMIC VALENCE INDEXES IN THE TOPOLOGICAL THEORY OF ATOMS IN MOLECULES [J].
ANGYAN, JG ;
LOOS, M ;
MAYER, I .
JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (20) :5244-5248
[2]   Polarizable Intermolecular Potentials for Water and Benzene Interacting with Halide and Metal Ions [J].
Archambault, Fabien ;
Chipot, Christophe ;
Soteras, Ignacio ;
Javier Luque, F. ;
Schulten, Klaus ;
Dehez, Francois .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2009, 5 (11) :3022-3031
[3]  
Bader R. F. W., 1994, ATOMS MOL QUANTUM TH
[4]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[5]   Interacting quantum atoms:: A correlated energy decomposition scheme based on the Quantum Theory of Atoms in Molecules [J].
Blanco, MA ;
Pendás, AM ;
Francisco, E .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2005, 1 (06) :1096-1109
[6]   Multipolar electrostatics [J].
Cardamone, Salvatore ;
Hughes, Timothy J. ;
Popelier, Paul L. A. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (22) :10367-10387
[7]   Many-Body Exchange-Repulsion in Polarizable Molecular Mechanics. I. Orbital-Based Approximations and Applications to Hydrated Metal Cation Complexes [J].
Chaudret, Robin ;
Gresh, Nohad ;
Parisel, Olivier ;
Piquemal, Jean-Philip .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (14) :2949-2957
[8]  
Cressie N., 2015, STAT SPATIO TEMPORAL
[9]   The prediction of atomic kinetic energies from coordinates of surrounding atoms using kriging machine learning [J].
Fletcher, Timothy L. ;
Kandathil, Shaun M. ;
Popelier, Paul L. A. .
THEORETICAL CHEMISTRY ACCOUNTS, 2014, 133 (07) :1-10
[10]   Prediction of Intramolecular Polarization of Aromatic Amino Acids Using Kriging Machine Learning [J].
Fletcher, Timothy L. ;
Davie, Stuart J. ;
Popelier, Paul L. A. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (09) :3708-3719