Transient Stability Constrained Optimal Power Flow Using Teaching Learning Based Optimization

被引:0
作者
Oubbati, Youcef [1 ]
Arif, Salem [1 ]
机构
[1] Univ Amar Telidji Laghouat, LACoSERE, Laghouat, Algeria
来源
PROCEEDINGS OF 2016 8TH INTERNATIONAL CONFERENCE ON MODELLING, IDENTIFICATION & CONTROL (ICMIC 2016) | 2016年
关键词
Power System; Transient Stability Constrained Optimal Power Flow (TSCOPF); Teaching-Learning-Based Optimization (TLBO); Optimal Power Flow (OPT); Power System Contingencies; DIFFERENTIAL EVOLUTION; GENETIC ALGORITHM; SELECTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Transient Stability Constrained Optimal Power Flow (TSCOPF) constitutes one of the most computational intensive applications; it is used for power system preventive control against blackouts triggered by transient instability after a contingency. In this paper, a novel Optimal Power Flow (OPF) is proposed by adding the Transient Stability (TS) constraints into the conventional OPF problem, a Teaching-Learning-Based Optimization (TLBO) is proposed to solve the OPF problem. The objective function is to minimize the total cost of fuel for all generators. The proposed methodology has been tested on standard test systems the IEEE 30-bus network model. The simulation results are compared to those obtained with other conventional and new methods found in recent works.)
引用
收藏
页码:284 / 289
页数:6
相关论文
共 21 条
[1]   Optimal power flow using particle swarm optimization [J].
Abido, MA .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2002, 24 (07) :563-571
[2]   Optimal power flow using differential evolution algorithm [J].
Abou El Ela, A. A. ;
Abido, M. A. ;
Spea, S. R. .
ELECTRIC POWER SYSTEMS RESEARCH, 2010, 80 (07) :878-885
[3]  
[Anonymous], 2016, Decis. Sci. Lett
[4]   Optimal Power Flow Using Adapted Genetic Algorithm with Adjusting Population Size [J].
Attia, Abdel-Fattah ;
Al-Turki, Yusuf A. ;
Abusorrah, Abdullah M. .
ELECTRIC POWER COMPONENTS AND SYSTEMS, 2012, 40 (11) :1285-1299
[5]   Optimal power flow by enhanced genetic algorithm [J].
Bakirtzis, AG ;
Biskas, PN ;
Zoumas, CE ;
Petridis, V .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2002, 17 (02) :229-236
[6]   A hybrid genetic algorithm for constrained optimization problems in mechanical engineering [J].
Bernardino, H. S. ;
Barbosa, H. J. C. ;
Lemonge, A. C. C. .
2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, :646-+
[7]   Optimal power flow using Teaching-Learning-Based Optimization technique [J].
Bouchekara, H. R. E. H. ;
Abido, M. A. ;
Boucherma, M. .
ELECTRIC POWER SYSTEMS RESEARCH, 2014, 114 :49-59
[8]   A note on teaching-learning-based optimization algorithm [J].
Crepinsek, Matej ;
Liu, Shih-Hsi ;
Mernik, Luka .
INFORMATION SCIENCES, 2012, 212 :79-93
[9]   Differential Evolution: A Survey of the State-of-the-Art [J].
Das, Swagatam ;
Suganthan, Ponnuthurai Nagaratnam .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) :4-31
[10]   Stability-constrained optimal power flow [J].
Gan, DQ ;
Thomas, RJ ;
Zimmerman, RD .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (02) :535-540