Vertex-arboricity of toroidal graphs without K5- and 6-cycles

被引:1
作者
Zhu, Aina [1 ]
Chen, Dong [1 ]
Chen, Min [1 ]
Wang, Weifan [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
关键词
Toroidal graph; List vertex-arboricity; Complete graph; Cycle; PLANAR GRAPHS; POINT-ARBORICITY;
D O I
10.1016/j.dam.2021.12.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The vertex-arboricity upsilon a(G) of a graph G is defined to be the minimum number of colors needed to color the vertices of G such that no cycle is monochromatic. The list vertex-arboricity upsilon a(l)(G) is the list-coloring version of this concept. In this paper, we prove that every toroidal graph G with neither K-5(-) (a K-5 missing at most one edge) nor 6-cycles satisfies upsilon a(l) (G) <= 2. This will be best possible in the sense that forbidding only one of the two structures cannot guarantee its (list) vertex-arboricity being at most 2. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 18 条
  • [1] Planar Graphs Without 4-Cycles Adjacent to 3-Cycles Are List Vertex 2-Arborable
    Borodin, Oleg V.
    Ivanova, Anna O.
    [J]. JOURNAL OF GRAPH THEORY, 2009, 62 (03) : 234 - 240
  • [2] Variable degeneracy: extensions of Brooks' and Gallai's theorems
    Borodin, OV
    Kostochka, AV
    Toft, B
    [J]. DISCRETE MATHEMATICS, 2000, 214 (1-3) : 101 - 112
  • [3] POINT-ARBORICITY OF A GRAPH
    CHARTRAND, G
    KRONK, HV
    WALL, CE
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1968, 6 (02) : 169 - +
  • [4] POINT-ARBORICITY OF PLANAR GRAPHS
    CHARTRAND, G
    KRONK, HV
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 1969, 44 (176P): : 612 - +
  • [5] List vertex-arboricity of toroidal graphs without 4-cycles adjacent to 3-cycles
    Chen, Min
    Huang, Li
    Wang, Weifan
    [J]. DISCRETE MATHEMATICS, 2016, 339 (10) : 2526 - 2535
  • [6] Vertex-arboricity of planar graphs without intersecting triangles
    Chen, Min
    Raspaud, Andre
    Wang, Weifan
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (05) : 905 - 923
  • [7] Toroidal graphs containing neither K5- nor 6-cycles are 4-choosable
    Choi, Ilkyoo
    [J]. JOURNAL OF GRAPH THEORY, 2017, 85 (01) : 172 - 186
  • [8] Vertex arboricity of toroidal graphs with a forbidden cycle
    Choi, Ilkyoo
    Zhang, Haihui
    [J]. DISCRETE MATHEMATICS, 2014, 333 : 101 - 105
  • [9] Erdos P., 1979, C NUMERANTUM, VXXVI, P125
  • [10] On the vertex-arboricity of planar graphs without 7-cycles
    Huang, Danjun
    Shiu, Wai Chee
    Wang, Weifan
    [J]. DISCRETE MATHEMATICS, 2012, 312 (15) : 2304 - 2315