Comparing bacterial membrane interactions and antimicrobial activity of porcine lactoferricin-derived peptides

被引:43
作者
Han, F. F.
Gao, Y. H.
Luan, C.
Xie, Y. G.
Liu, Y. F.
Wang, Y. Z. [1 ]
机构
[1] Zhejiang Univ, Inst Feed Sci, Key Lab Mol Anim Nutr, Minist Agr, Hangzhou 310058, Zhejiang, Peoples R China
基金
中国博士后科学基金; 国家高技术研究发展计划(863计划);
关键词
porcine lactoferricin; antimicrobial activity; mechanism; cytoplasmic membrane; N-TERMINAL REGION; BOVINE LACTOFERRIN; ESCHERICHIA-COLI; STAPHYLOCOCCUS-AUREUS; PSEUDOMONAS-AERUGINOSA; ANTIBACTERIAL PEPTIDES; CYTOPLASMIC MEMBRANE; CANDIDA-ALBICANS; OUTER-MEMBRANE; ANTIBIOTICS;
D O I
10.3168/jds.2012-6104
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
Antibiotic treatment for microbial infections is under scrutiny due to increasing resistance to conventional antibiotics, warranting discovery of new classes of antibiotic agents. Antimicrobial peptides are part of the innate defense system found in nearly all organisms and possess bactericidal mechanisms that make it more difficult for bacteria to develop resistance. Porcine lactoferricin (LFP-20) is an antimicrobial peptide located in the N terminus of lactoferrin (LF). To develop novel cell-selective antimicrobial peptides with improved antimicrobial specificity compared with LFP-20, analogs LF2A LF-2, LF-4, and LF-6 were substituted with Ala, Ser, or Trp residues at different positions in the molecule. Analogs displayed a 2- to 16-fold higher antimicrobial activity than LFP-20, but were hemolytic at 64 mu g/mL. Additionally, LFP-20, LF2A, LF-2, and LF-4 exhibited lower cytotoxicity against human peripheral blood mononuclear cells than LF-6 at concentrations of 25 to 100 mu g/mL. To better understand the antibacterial mechanisms of LFP-20 and its analogs we examined their effect on the cytoplasmic membrane of Escherichia coli. The LFP-20 was not effective in depolarizing cytoplasmic membranes, whereas the other 3 analogs gradually dissipated the membrane potential of E. coli. Membrane potential increased with minimal inhibitory concentrations changes, demonstrating a correlation between bactericidal activity and membrane depolarization. Analogs were more efficient than LFP-20 in displacing lipopolysaccharide-bound dansyl-polymyxin B, which also rapidly increased 1-N-phenylnaphthylamine uptake and release of cytoplasmic P-galactosidase by increasing the permeability of the outer and inner membranes of E. coli. The 3 analogs caused an increased potential for calcein leakage from negatively charged lipid vesicles at high concentrations. Collectively, these results suggest that the first targets of LF-2, LF-4, and LF-6 in E. coli are cytoplasmic membranes. The 3 analogs exhibited lethal effects based on their abilities to disrupt membranes and permit transit of large intracellular components, such as calcein.
引用
收藏
页码:3471 / 3487
页数:17
相关论文
共 50 条
[41]   Antimicrobial alumina nanobiostructures of disulfide- and triazole-linked peptides: Synthesis, characterization, membrane interactions and biological activity [J].
Torres, L. M. F. C. ;
Almeida, M. T. ;
Santos, T. L. ;
Marinho, L. E. S. ;
de Mesquita, J. P. ;
da Silva, L. M. ;
dos Santos, W. T. P. ;
Martins, H. R. ;
Kato, K. C. ;
Alves, E. S. F. ;
Liao, L. M. ;
de Magalhaes, M. T. Q. ;
de Mendonca, F. G. ;
Pereira, F. V. ;
Resende, J. M. ;
Bemquerer, M. P. ;
Rodrigues, M. A. ;
Verly, R. M. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2019, 177 :94-104
[42]   Key Residues of Outer Membrane Protein OprI Involved in Hexamer Formation and Bacterial Susceptibility to Cationic Antimicrobial Peptides [J].
Chang, Ting-Wei ;
Wang, Chiu-Feng ;
Huang, Hsin-Jye ;
Wang, Iren ;
Hsu, Shang-Te Danny ;
Liao, You-Di .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2015, 59 (10) :6210-6222
[43]   Translocation of non-lytic antimicrobial peptides and bacteria penetrating peptides across the inner membrane of the bacterial envelope [J].
Frimodt-Moller, Jakob ;
Campion, Christopher ;
Nielsen, Peter E. ;
Lobner-Olesen, Anders .
CURRENT GENETICS, 2022, 68 (01) :83-90
[44]   Interactions between Surface-Immobilized Antimicrobial Peptides and Model Bacterial Cell Membranes [J].
Han, Xiaofeng ;
Zheng, Jingguo ;
Lin, Fengming ;
Kuroda, Kenichi ;
Chen, Zhan .
LANGMUIR, 2018, 34 (01) :512-520
[45]   Membrane Activity of LL-37 Derived Antimicrobial Peptides against Enterococcus hirae: Superiority of SAAP-148 over OP-145 [J].
Piller, Paulina ;
Wolinski, Heimo ;
Cordfunke, Robert A. ;
Drijfhout, Jan Wouter ;
Keller, Sandro ;
Lohner, Karl ;
Malanovic, Nermina .
BIOMOLECULES, 2022, 12 (04)
[46]   Resistance to dermcidin-derived peptides is independent of bacterial protease activity [J].
Senyuerek, I. ;
Doering, G. ;
Kalbacher, H. ;
Deeg, M. ;
Peschel, A. ;
Wolz, C. ;
Schittek, B. .
INTERNATIONAL JOURNAL OF ANTIMICROBIAL AGENTS, 2009, 34 (01) :86-90
[47]   A Molecular Dynamics Study of Antimicrobial Peptide Interactions with the Lipopolysaccharides of the Outer Bacterial Membrane [J].
Pradyumn Sharma ;
K. Ganapathy Ayappa .
The Journal of Membrane Biology, 2022, 255 :665-675
[48]   Hybrids of Membrane-Translocating Antimicrobial Peptides Show Enhanced Activity through Membrane Permeabilization [J].
Trevellin, Giulia F. ;
Kwag, JuYoung ;
Shui, Michelle L. ;
Klim, Hannah ;
Alvarez, Valentina ;
Darling, Louise E. O. ;
Elmore, Donald E. .
ACS MEDICINAL CHEMISTRY LETTERS, 2024, 15 (11) :1918-1924
[49]   Construction of Bacillus subtilis strain engineered for expression of porcine β-defensin-2/cecropin P1 fusion antimicrobial peptides and its growth-promoting effect and antimicrobial activity [J].
Xu, Jian ;
Zhong, Fei ;
Zhang, Yonghong ;
Zhang, Jianlou ;
Huo, Shanshan ;
Lin, Hongyu ;
Wang, Liyue ;
Cui, Dan ;
Li, Xiujin .
ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2017, 30 (04) :576-584
[50]   The role of bacterial lipid diversity and membrane properties in modulating antimicrobial peptide activity and drug resistance [J].
Lee, Tzong-Hsien ;
Hofferek, Vinzenz ;
Separovic, Frances ;
Reid, Gavin E. ;
Aguilar, Marie-Isabel .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2019, 52 :85-92