Ultralow thermal conductivity and negative thermal expansion of CuSCN

被引:33
作者
Shen, Yupeng [1 ]
Wang, Fancy Qian [1 ]
Wang, Qian [1 ]
机构
[1] Peking Univ, Dept Mat Sci & Engn, Ctr Appl Phys & Technol, HEDPS,BKL MEMD,Coll Engn, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal conductivity; Thermal expansion; CuSCN; Density functional; Theory; Thermoelectric; COPPER(I) THIOCYANATE; EFFICIENCY; STABILITY; MODES;
D O I
10.1016/j.nanoen.2020.104822
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Copper thiocyanate (CuSCN) has recently received considerable attention because of its high hole mobility and applications in solar cells [Science 358(2017)768]. In this work, by performing state-of-the-art theoretical calculations, for the first time we find that the thermal conductivities of both alpha- and beta-CuSCN are ultralow with the values of 1.2 and 2.4 W/mK at room temperature, respectively. Based on detailed analyses of the phonon dispersion, Gruneisen parameters, three phonon scattering rates and atomic displacement parameters, we further demonstrate that the underlying reasons for the ultralow thermal conductivities are due to the avoided crossing between the longitudinal acoustic (LA) phonons and the low-lying optical branches as well as the weak bonding and strong anharmonicity. The low lattice thermal conductivities lead to high ZT values of 1.7 and 2.1 at 800 K for alpha- and beta-CuSCN, respectively. In addition, both materials exhibit large negative thermal expansion (NTE) coefficients originated from the transverse vibrations in Cu-N-C-S chains. These features endow CuSCN with the potential for thermal barrier coating and thermal devices going beyond the reported photovoltaic applications.
引用
收藏
页数:8
相关论文
共 58 条
[1]  
[Anonymous], 2019, PHYS REV MATER, DOI DOI 10.1103/PHYSREVMATERIALS.3.085402
[2]   Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% [J].
Arora, Neha ;
Dar, M. Ibrahim ;
Hinderhofer, Alexander ;
Pellet, Norman ;
Schreiber, Frank ;
Zakeeruddin, Shaik Mohammed ;
Graetzel, Michael .
SCIENCE, 2017, 358 (6364) :768-771
[3]   Density-Functional Perturbation Theory for Quasi-Harmonic Calculations [J].
Baroni, Stefano ;
Giannozzi, Paolo ;
Isaev, Eyvaz .
THEORETICAL AND COMPUTATIONAL METHODS IN MINERAL PHYSICS: GEOPHYSICAL APPLICATIONS, 2010, 71 :39-57
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Avoided crossing of rattler modes in thermoelectric materials [J].
Christensen, Mogens ;
Abrahamsen, Asger B. ;
Christensen, Niels B. ;
Juranyi, Fanni ;
Andersen, Niels H. ;
Lefmann, Kim ;
Andreasson, Jakob ;
Bahl, Christian R. H. ;
Iversen, Bo B. .
NATURE MATERIALS, 2008, 7 (10) :811-815
[6]   A sintering model for plasma-sprayed zirconia TBCs. Part I: Free-standing coatings [J].
Cipitria, A. ;
Golosnoy, I. O. ;
Clyne, T. W. .
ACTA MATERIALIA, 2009, 57 (04) :980-992
[7]  
Delaire O, 2011, NAT MATER, V10, P614, DOI [10.1038/NMAT3035, 10.1038/nmat3035]
[8]   Dual effects of lone-pair electrons and rattling atoms in CuBiS2 on its ultralow thermal conductivity [J].
Feng, Zhenzhen ;
Jia, Tiantian ;
Zhang, Jihua ;
Wang, Yuanxu ;
Zhang, Yongsheng .
PHYSICAL REVIEW B, 2017, 96 (23)
[9]   Thermal and vibrational properties of thermoelectric ZnSb: Exploring the origin of low thermal conductivity [J].
Fischer, A. ;
Scheidt, E. -W. ;
Scherer, W. ;
Benson, D. E. ;
Wu, Y. ;
Eklof, D. ;
Haussermann, U. .
PHYSICAL REVIEW B, 2015, 91 (22)
[10]   Unusually low thermal conductivity of atomically thin 2D tellurium [J].
Gao, Zhibin ;
Tao, Fang ;
Ren, Jie .
NANOSCALE, 2018, 10 (27) :12997-13003