Stickelberger elements, Fitting ideals of class groups of CM-fields, and dualisation

被引:17
作者
Greither, Cornelius [1 ]
Kurihara, Masato [2 ]
机构
[1] Univ Bundeswehr Munchen, Fak Informat, D-85577 Neuherberg, Germany
[2] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
D O I
10.1007/s00209-008-0306-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we systematically construct abelian extensions of CM-fields over a totally real field whose Stickelberger elements are not in the Fitting ideals of the class groups. Our evidence indicates that Pontryagin duals of class groups behave better than the class groups themselves. We also explore the behaviour of Fitting ideals under projective limits and dualisation in a somewhat broader context.
引用
收藏
页码:905 / 930
页数:26
相关论文
共 18 条
[11]  
KURIHARA M, 2003, DOC MATH, P539
[12]   CLASS FIELDS OF ABELIAN EXTENSIONS OF Q [J].
MAZUR, B ;
WILES, A .
INVENTIONES MATHEMATICAE, 1984, 76 (02) :179-330
[13]  
Motzkin T. S., 1955, T AM MATH SOC, V80, P387
[14]  
Neukirch J., 2000, GRUND MATH WISS, V323
[15]   Stark's question and a refinement of Brumer's conjecture extrapolated to the function field case [J].
Popescu, CD .
COMPOSITIO MATHEMATICA, 2004, 140 (03) :631-646
[16]   ON THE NUMBER OF GENERATORS OF IDEALS IN LOCAL-RINGS [J].
SHALEV, A .
ADVANCES IN MATHEMATICS, 1986, 59 (01) :82-94
[17]  
Tate John, 1984, Progress in Mathematics, V47
[18]   THE IWASAWA CONJECTURE FOR TOTALLY-REAL FIELDS [J].
WILES, A .
ANNALS OF MATHEMATICS, 1990, 131 (03) :493-540