Stickelberger elements, Fitting ideals of class groups of CM-fields, and dualisation

被引:17
作者
Greither, Cornelius [1 ]
Kurihara, Masato [2 ]
机构
[1] Univ Bundeswehr Munchen, Fak Informat, D-85577 Neuherberg, Germany
[2] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 2238522, Japan
关键词
D O I
10.1007/s00209-008-0306-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we systematically construct abelian extensions of CM-fields over a totally real field whose Stickelberger elements are not in the Fitting ideals of the class groups. Our evidence indicates that Pontryagin duals of class groups behave better than the class groups themselves. We also explore the behaviour of Fitting ideals under projective limits and dualisation in a somewhat broader context.
引用
收藏
页码:905 / 930
页数:26
相关论文
共 18 条
[1]  
[Anonymous], 1997, INTRO CYCLOTOMIC FIE
[2]   On the irreducibility of varieties of commuting matrices [J].
Basili, R .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 149 (02) :107-120
[3]   Fitting ideals of class groups of real fields with prime power conductor [J].
Cornacchia, P ;
Greither, C .
JOURNAL OF NUMBER THEORY, 1998, 73 (02) :459-471
[4]   VALUES OF ABELIAN L-FUNCTIONS AT NEGATIVE INTEGERS OVER TOTALLY-REAL FIELDS [J].
DELIGNE, P ;
RIBET, KA .
INVENTIONES MATHEMATICAE, 1980, 59 (03) :227-286
[5]   Computing Fitting ideals of Iwasawa modules [J].
Greither, C .
MATHEMATISCHE ZEITSCHRIFT, 2004, 246 (04) :733-767
[6]   Determining Fitting ideals of minus class groups via the equivariant Tamagawa number conjecture [J].
Greither, Cornelius .
COMPOSITIO MATHEMATICA, 2007, 143 (06) :1399-1426
[7]  
Guralnick R., 1992, Linear Multilinear Algebra, V31, P71, DOI [10.1080/03081089208818123, DOI 10.1080/03081089208818123]
[8]   ZL-EXTENSIONS OF ALGEBRAIC NUMBER FIELDS [J].
IWASAWA, K .
ANNALS OF MATHEMATICS, 1973, 98 (02) :246-326
[9]  
Jensen C. U., 1972, LECT NOTES MATH, V254
[10]  
Kurihara M, 2003, J REINE ANGEW MATH, V561, P39