Derived autoequivalences from periodic algebras

被引:9
作者
Grant, Joseph [1 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
CATEGORIES; EQUIVALENCES;
D O I
10.1112/plms/pds043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a construction of autoequivalences of derived categories of symmetric algebras based on projective modules with periodic endomorphism algebras. This construction generalizes autoequivalences previously constructed by Rouquier-Zimmermann and is related to the autoequivalences of Seidel-Thomas and Huybrechts-Thomas. We show that compositions and inverses of these equivalences are controlled by the resolutions of our endomorphism algebra and that each autoequivalence can be obtained by certain compositions of derived equivalences between algebras which are in general not Morita equivalent.
引用
收藏
页码:375 / 409
页数:35
相关论文
共 24 条
[1]  
Aihara T., 2010, PREPRINT
[2]  
Benson D.J., 1995, CAMBRIDGE STUDIES AD, V30
[3]  
Benson D, 2009, INT ELECTRON J ALGEB, V6, P46
[4]   Periodic algebras which are almost Koszul [J].
Brenner, S ;
Butler, MCR ;
King, AD .
ALGEBRAS AND REPRESENTATION THEORY, 2002, 5 (04) :331-367
[5]   Equivalences of triangulated categories and Fourier-Mukai transforms [J].
Bridgeland, T .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1999, 31 :25-34
[6]  
Buenos Aires Cyclic Homology Group, 1991, K-THEORY, V5, P51
[7]  
Erdmann K., 2008, TRENDS REPRESENTATIO, P201
[8]  
Grant J., 2010, THESIS U BRISTOL
[9]   The Hochschild cohomology ring of a selfinjective algebra of finite representation type [J].
Green, EL ;
Snashall, N ;
Solberg, O .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (11) :3387-3393
[10]  
Huybrechts D, 2006, MATH RES LETT, V13, P87