Large Shafarevich-Tate groups over quadratic number fields

被引:1
作者
Yu, Myungjun [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
关键词
Elliptic curves; Quadratic twists; Shafarevich-Tate groups; Selmer groups; ELLIPTIC-CURVES;
D O I
10.1016/j.jnt.2018.12.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an elliptic curve over the rational field Q. Let K be a quadratic extension of Q. We show that (under mild conditions on E) for every r > 0, there are infinitely many quadratic twists E-d/Q of E/Q such that dim(F2) (III(E-d/K)[2]) > r. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:98 / 109
页数:12
相关论文
共 20 条
[1]  
[Anonymous], 1986, GRADUATE TEXTS MATH
[2]   ORDER OF SAFAREVIC-TATE GROUP CAN BE ARBITRARILY LARGE [J].
BOLLING, R .
MATHEMATISCHE NACHRICHTEN, 1975, 67 :157-179
[3]   On the modularity of elliptic curves over Q: Wild 3-adic exercises [J].
Breuil, C ;
Conrad, B ;
Diamond, F ;
Taylor, R .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (04) :843-939
[4]  
Cassels J. W. S., 1964, J REINE ANGEW MATH, V214, P65, DOI DOI 10.1515/CRLL.1964.214-215.65
[5]   Period, index and potential, III [J].
Clark, Pete L. ;
Sharif, Shahed .
ALGEBRA & NUMBER THEORY, 2010, 4 (02) :151-174
[6]  
Fisher T., 2001, Journal of the European Mathematical Society, V3, P169, DOI DOI 10.1007/S100970100030
[7]  
Hoffstein J, 1997, MATH RES LETT, V4, P435
[8]   Disparity in Selmer ranks of quadratic twists of elliptic curves [J].
Klagsbrun, Zev ;
Mazur, Barry ;
Rubin, Karl .
ANNALS OF MATHEMATICS, 2013, 178 (01) :287-320
[9]  
Kloosterman R., 2005, J THEOR NOMBRES BORD, V17, P787
[10]  
Kolyvagin V.A., 1988, Izv. Akad. Nauk SSSR Ser. Mat, V52, P670