Stable periodic solutions in the forced pendulum equation

被引:7
作者
Ortega, Rafael [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
Lyapunov stability; forced pendulum; prevalence; periodic solution; regular value; discriminant; STABILITY; SYSTEMS; POINTS;
D O I
10.1134/S1560354713060026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the pendulum equation with an external periodic force and an appropriate condition on the length parameter. It is proved that there exists at least one stable periodic solution for almost every external force with zero average. The stability is understood in the Lyapunov sense.
引用
收藏
页码:585 / 599
页数:15
相关论文
共 23 条
[21]  
OXTOBY JC, 1971, GRAD TEXTS MATH, V2
[22]   Stability of elliptic fixed points of analytic area-preserving mappings under the Bruno condition [J].
Rüssmann, H .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 :1551-1573
[23]  
Sierpinski Waclaw., 2000, GEN TOPOLOGY