Stable periodic solutions in the forced pendulum equation

被引:7
作者
Ortega, Rafael [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Matemat Aplicada, E-18071 Granada, Spain
关键词
Lyapunov stability; forced pendulum; prevalence; periodic solution; regular value; discriminant; STABILITY; SYSTEMS; POINTS;
D O I
10.1134/S1560354713060026
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the pendulum equation with an external periodic force and an appropriate condition on the length parameter. It is proved that there exists at least one stable periodic solution for almost every external force with zero average. The stability is understood in the Lyapunov sense.
引用
收藏
页码:585 / 599
页数:15
相关论文
共 23 条
[1]  
[Anonymous], 1988, MANIFOLDS TENSOR ANA, DOI DOI 10.1007/978-1-4612-1029-0
[2]  
[Anonymous], 1989, GRAD TEXTS MATH
[3]  
Caratheodory C., 1999, CALCULUS VARIATIONS
[4]   Stability of Elliptic Periodic Points with an Application to Lagrangian Equilibrium Solutions [J].
Hua, Yongxia ;
Xia, Zhihong .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2013, 12 (01) :243-253
[5]  
Lei J., 2005, J DYN DIFFER EQU, V17, P21, DOI DOI 10.1007/S10884-005-2937-4
[6]   Twist character of the least amplitude periodic solution of the forced pendulum [J].
Lei, JZ ;
Li, X ;
Yan, P ;
Zhang, MR .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (04) :844-867
[7]   Lipschitz image of a measure-null set can have a null complement [J].
Lindenstrauss, J ;
Matousková, E ;
Preiss, D .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 118 (1) :207-219
[8]  
MAGNUS W, 1979, HILLS EQUATION
[9]   PERIODIC-ORBITS AND SOLENOIDS IN GENERIC HAMILTONIAN DYNAMICAL-SYSTEMS [J].
MARKUS, L ;
MEYER, KR .
AMERICAN JOURNAL OF MATHEMATICS, 1980, 102 (01) :25-92
[10]   GENERIC RESULTS FOR THE EXISTENCE OF NONDEGENERATE PERIODIC-SOLUTIONS OF SOME DIFFERENTIAL-SYSTEMS WITH PERIODIC NONLINEARITIES [J].
MARTINEZAMORES, P ;
MAWHIN, J ;
ORTEGA, R ;
WILLEM, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (01) :138-148