Almost quaternion-Hermitian manifolds

被引:8
作者
Cabrera, FM [1 ]
机构
[1] Univ La Laguna, Dept Matemat Fundamental, Tenerife 38200, Spain
关键词
almost quaternion-Hermitian; G-structures;
D O I
10.1023/B:AGAG.0000023249.48228.93
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Following the point of view of Gray and Hervella, we derive detailed conditions which characterize each one of the classes of almost quaternion-Hermitian 4n-manifolds, n > 1. Previously, by completing a basic result of Swann, we give explicit descriptions of the tensors contained in the space of covariant derivatives of the fundamental form Ohm and split the coderivative of Ohm into its Sp(n) Sp(1)-components. For 4n > 8, Swann also proved that all the information about the intrinsic torsion delOhm is contained in the exterior derivative dOhm. Thus, we give alternative conditions, expressed in terms of dOhm, to characterize the different classes of almost quaternion-Hermitian manifolds.
引用
收藏
页码:277 / 301
页数:25
相关论文
共 19 条
[1]   Quaternionic structures on a manifold and subordinated structures. [J].
Alekseevsky, DV ;
Marchiafava, S .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1996, 171 :205-273
[2]  
Berger M., 1955, B SOC MATH FRANCE, V83, P279
[3]  
BERGERY B, 1984, GLOBAL RIEMANNIAN GE
[4]  
BROCKER T, 1985, GRADUATE TEXT MATH, V98
[5]  
CORDERO LA, 1987, B UNIONE MAT ITAL, V1A, P31
[6]   HyperKahler torsion structures invariant by nilpotent Lie groups [J].
Dotti, IG ;
Fino, A .
CLASSICAL AND QUANTUM GRAVITY, 2002, 19 (03) :551-562
[7]  
GRAY A, 1965, MICH MATH J, V12, P273
[8]  
GRAY A., 1980, ANN MAT PUR APPL, V123, P35, DOI DOI 10.1007/BF01796539
[9]   Geometry of quaternionic Kahler connections with torsion [J].
Ivanov, S .
JOURNAL OF GEOMETRY AND PHYSICS, 2002, 41 (03) :235-257
[10]  
JOYCE D, 1992, J DIFFER GEOM, V35, P743