Complex coacervation of hyaluronic acid and chitosan: effects of pH, ionic strength, charge density, chain length and the charge ratio

被引:141
作者
Kayitmazer, A. B. [1 ]
Koksal, A. F. [1 ]
Iyilik, E. Kilic [1 ]
机构
[1] Bogazici Univ, Dept Chem, TR-34342 Istanbul, Turkey
基金
欧盟第七框架计划;
关键词
POLYELECTROLYTE-MICELLE COACERVATION; MOLECULAR-WEIGHT; SODIUM HYALURONATE; PHASE-BEHAVIOR; BETA-LACTOGLOBULIN; AQUEOUS-SOLUTIONS; PROTEIN; SYSTEMS; SALT; WATER;
D O I
10.1039/c5sm01829c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hyaluronic acid (HA) and chitosan (CH) can form nanoparticles, hydrogels, microspheres, sponges, and films, all with a wide range of biomedical applications. This variety of phases reflects the multiple pathways available to HA/CH complexes. Here, we use turbidimetry, dynamic light scattering, light microscopy and zeta potential measurements to show that the state of the dense phase depends on the molar ratio of HA carboxyl to CH amines, and is strongly dependent on their respective degrees of ionization, alpha and beta. Due to the strong charge complementarity between HA and CH, electrostatic self-assembly takes place at very acidic pH, but is almost unobservable at ionic strength (I) >= 1.5 M NaCl. All systems display discontinuity in the I-dependence of the turbidity, corresponding to a transition from coacervates to flocculates. An increase in either polymer chain length or charge density enhances phase separation. Remarkably, non-stoichiometric coacervate suspensions form at zeta potentials far away from zero. This result is attributed to the entropic effects of chain semi-flexibility as well as to the charge mismatch between the two biopolymers.
引用
收藏
页码:8605 / 8612
页数:8
相关论文
共 59 条
[1]   Entering and Exiting the Protein-Polyelectrolyte Coacervate Phase via Nonmonotonic Salt Dependence of Critical Conditions [J].
Antonov, Margarita ;
Mazzawi, Malek ;
Dubin, Paul L. .
BIOMACROMOLECULES, 2010, 11 (01) :51-59
[2]  
Berth G, 2002, PROG COLL POL SCI S, V119, P50
[3]   Cylindrical cell model for the electrostatic free energy of polyelectrolyte complexes [J].
Biesheuvel, PM ;
Stuart, MAC .
LANGMUIR, 2004, 20 (11) :4764-4770
[4]  
Bungenberg de Jong H. G., 1949, COLLOID SCI, P335
[5]   PRACTICAL ANALYSIS OF COMPLEX COACERVATE SYSTEMS [J].
BURGESS, DJ .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1990, 140 (01) :227-238
[6]   Polyelectrolyte complexation between poly(methacrylic acid, sodium salt) and poly(diallyldimethylammonium chloride) or poly [2-(methacryloyloxyethyl) trimethylammonium chloride] [J].
Burke, Nicholas A. D. ;
Mazumder, M. A. Jafar ;
Hanna, Mark ;
Stoever, Harald D. H. .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2007, 45 (17) :4129-4143
[7]   Polysaccharide Films Built by Simultaneous or Alternate Spray: A Rapid Way to Engineer Biomaterial Surfaces [J].
Cado, G. ;
Kerdjoudj, H. ;
Chassepot, A. ;
Lefort, M. ;
Benmlih, K. ;
Hemmerle, J. ;
Voegel, J. -C. ;
Jierry, L. ;
Schaaf, P. ;
Frere, Y. ;
Boulmedais, F. .
LANGMUIR, 2012, 28 (22) :8470-8478
[8]   Preparation and characterization of alginate-N-2-hydroxypropyl trimethyl ammonium chloride chitosan microcapsules loaded with patchouli oil [J].
Chen, Minjie ;
Liu, Jiayi ;
Liu, Yingju ;
Guo, Cheng ;
Yang, Zhuohong ;
Wu, Hong .
RSC ADVANCES, 2015, 5 (19) :14522-14530
[9]   Polyelectrolyte Molecular Weight and Salt Effects on the Phase Behavior and Coacervation of Aqueous Solutions of Poly(acrylic acid) Sodium Salt and Poly(allylamine) Hydrochloride [J].
Chollakup, Rungsima ;
Beck, John B. ;
Dirnberger, Klaus ;
Tirrell, Matthew ;
Eisenbach, Claus D. .
MACROMOLECULES, 2013, 46 (06) :2376-2390
[10]   Phase Behavior and Coacervation of Aqueous Poly(acrylic acid)-Poly(allylamine) Solutions [J].
Chollakup, Rungsima ;
Smitthipong, Wirasak ;
Eisenbach, Claus D. ;
Tirrell, Matthew .
MACROMOLECULES, 2010, 43 (05) :2518-2528