Free-standing nitrogen-doped carbon nanofiber films as highly efficient electrocatalysts for oxygen reduction

被引:110
作者
Liu, Dong [1 ,2 ]
Zhang, Xueping [1 ,2 ]
Sun, Zaicheng [3 ]
You, Tianyan [1 ]
机构
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Electroanalyt Chem, Changchun 130022, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, State Key Lab Luminescence & Applicat, Changchun 130033, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-FREE ELECTROCATALYSTS; ORDERED MESOPOROUS CARBONS; DENSITY-FUNCTIONAL THEORY; LARGE-SCALE PRODUCTION; GRAPHENE; NANOTUBES; PHOSPHORUS; MECHANISM; ALKALINE; ARRAYS;
D O I
10.1039/c3nr03229a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Free-standing nitrogen-doped carbon nanofiber (NCNF) films based on polyacrylonitrile (PAN) were prepared simply by the combination of electrospinning and thermal treatment. We reused the nitrogen-rich gas generated as the byproduct of PAN at elevated temperature, mainly NH3, for surface etching and nitrogen doping. The as-obtained NCNFs exhibited a rougher surface and smaller diameter than pristine carbon nanofibers. Despite the decreased total N content, a significant increase in the content of pyrrolic-N was observed for the NCNFs. In application to electrochemistry, the free-standing NCNF films showed comparable catalytic activity with a close four-electron pathway to a commercial Pt/C catalyst in alkaline medium toward oxygen reduction reaction (ORR), which can be attributed to the nitrogen doping and high hydrophilicity. More importantly, the ORR current density on the NCNFs only dropped 6.6% after 10 000 s of continuous operation, suggesting an enhanced long-time durability. In addition, the NCNFs also showed better electrocatalytic selectivity than Pt/C. Our work reveals a facile but efficient approach for the synthesis of free-standing NCNF films as a promising alternative to Pt-based electrocatalysts in fuel cells.
引用
收藏
页码:9528 / 9531
页数:4
相关论文
共 29 条
[1]   POLYACRYLONITRILE DEGRADATION KINETICS STUDIED BY MICROPYROLYSIS-GLC TECHNIQUE [J].
BELL, FA .
POLYMER, 1971, 12 (09) :579-&
[2]   Synthesis of Nitrogen-Doped Porous Carbon Nanofibers as an Efficient Electrode Material for Supercapacitors [J].
Chen, Li-Feng ;
Zhang, Xu-Dong ;
Liang, Hai-Wei ;
Kong, Mingguang ;
Guan, Qing-Fang ;
Chen, Ping ;
Wu, Zhen-Yu ;
Yu, Shu-Hong .
ACS NANO, 2012, 6 (08) :7092-7102
[3]   A review on non-precious metal electrocatalysts for PEM fuel cells [J].
Chen, Zhongwei ;
Higgins, Drew ;
Yu, Aiping ;
Zhang, Lei ;
Zhang, Jiujun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3167-3192
[4]   Flexible graphene-polyaniline composite paper for high-performance supercapacitor [J].
Cong, Huai-Ping ;
Ren, Xiao-Chen ;
Wang, Ping ;
Yu, Shu-Hong .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (04) :1185-1191
[5]   Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction [J].
Deng, Dehui ;
Yu, Liang ;
Chen, Xiaoqi ;
Wang, Guoxiong ;
Jin, Li ;
Pan, Xiulian ;
Deng, Jiao ;
Sun, Gongquan ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (01) :371-375
[6]   High oxygen-reduction activity and durability of nitrogen-doped graphene [J].
Geng, Dongsheng ;
Chen, Ying ;
Chen, Yougui ;
Li, Yongliang ;
Li, Ruying ;
Sun, Xueliang ;
Ye, Siyu ;
Knights, Shanna .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (03) :760-764
[7]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764
[8]   Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells [J].
Jaouen, Frederic ;
Proietti, Eric ;
Lefevre, Michel ;
Chenitz, Regis ;
Dodelet, Jean-Pol ;
Wu, Gang ;
Chung, Hoon Taek ;
Johnston, Christina Marie ;
Zelenay, Piotr .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (01) :114-130
[9]   Large-Scale Production of Edge-Selectively Functionalized Graphene Nanoplatelets via Ball Milling and Their Use as Metal-Free Electrocatalysts for Oxygen Reduction Reaction [J].
Jeon, In-Yup ;
Choi, Hyun-Jung ;
Jung, Sun-Min ;
Seo, Jeong-Min ;
Kim, Min-Jung ;
Dai, Liming ;
Baek, Jong-Beom .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1386-1393
[10]   Density Functional Theory Study of Ni-Nx/C Electrocatalyst for Oxygen Reduction in Alkaline and Acidic Media [J].
Kattel, Shyam ;
Atanassov, Plamen ;
Kiefer, Bons .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (33) :17378-17383