A Mehrotra predictor-corrector interior-point algorithm for semidefinite optimization

被引:1
|
作者
Pirhaji, Mohammad [1 ]
Zangiabadi, Maryam [1 ]
Mansouri, Hossein [1 ]
机构
[1] Shahrekord Univ, Dept Appl Math, Fac Math Sci, Shahrekord, Iran
关键词
Semidefinite optimization; Mehrotra-type predictor-corrector algorithm; polynomial complexity; ITERATION-COMPLEXITY;
D O I
10.3906/mat-1511-108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a second-order Mehrotra-type predictor-corrector feasible interior-point algorithm for semidefinite optimization problems. In each iteration, the algorithm computes the Newton search directions through a new form of combination of the predictor and corrector directions. Using the Ai-Zhang wide neighborhood for linear complementarity problems, it is shown that the complexity bound of the algorithm is O(root nlog epsilon(-1)) for the Nesterov Todd search direction and O(root nlog epsilon(-1)) for the Helmberg-Kojima-Monteiro search directions.
引用
收藏
页码:168 / 185
页数:18
相关论文
共 50 条