Phosphatase inhibitor-1-deficient mice are protected from catecholamine-induced arrhythmias and myocardial hypertrophy

被引:85
作者
El-Armouche, Ali [1 ]
Wittkoepper, Katrin [1 ]
Degenhardt, Franziska [1 ]
Weinberger, Florian [1 ]
Didie, Michael [1 ]
Melnychenko, Ivan [1 ]
Grimm, Michael [1 ]
Peeck, Micha [1 ]
Zimmermann, Wolfram H. [1 ]
Unsoeld, Bernhard [2 ]
Hasenfuss, Gerd [2 ]
Dobrev, Dobromir [3 ]
Eschenhagen, Thomas [1 ]
机构
[1] Univ Med Ctr Hamburg Eppendorf, Inst Expt & Clin Pharmacol & Toxicol, D-20246 Hamburg, Germany
[2] Univ Gottingen, Dept Cardiol & Pneumol, Gottingen, Germany
[3] Tech Univ Dresden, Dept Pharmacol & Toxicol, D-8027 Dresden, Germany
关键词
D O I
10.1093/cvr/cvn208
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Phosphatase inhibitor-1 (I-1) is a conditional amplifier of beta-adrenergic signalling downstream of protein kinase A by inhibiting type-1 phosphatases only in its PKA-phosphorylated form. I-1 is downregulated in failing hearts and thus contributes to beta-adrenergic desensitization. It is unclear whether this should be viewed as a predominantly adverse or protective response. We generated transgenic mice with cardiac-specific I-1 overexpression (I-1-TG) and evaluated cardiac function and responses to catecholamines in mice with targeted disruption of the I-1 gene (I-1-KO). Both groups were compared with their wild-type (WT) littermates. I-1-TG developed cardiac hypertrophy and mild dysfunction which was accompanied by a substantial compensatory increase in PP1 abundance and activity, confounding cause-effect relationships. I-1-KO had normal heart structure with mildly reduced sensitivity, but unchanged maximal contractile responses to beta-adrenergic stimulation, both in vitro and in vivo. Notably, I-1-KO were partially protected from lethal catecholamine-induced arrhythmias and from hypertrophy and dilation induced by a 7 day infusion with the beta-adrenergic agonist isoprenaline. Moreover, I-1-KO exhibited a partially preserved acute beta-adrenergic response after chronic isoprenaline, which was completely absent in similarly treated WT. At the molecular level, I-1-KO showed lower steady-state phosphorylation of the cardiac ryanodine receptor/Ca(2+) release channel and the sarcoplasmic reticulum (SR) Ca(2+)-ATPase-regulating protein phospholamban. These alterations may lower the propensity for diastolic Ca(2+) release and Ca(2+) uptake and thus stabilize the SR and account for the protection. Taken together, loss of I-1 attenuates detrimental effects of catecholamines on the heart, suggesting I-1 downregulation in heart failure as a beneficial desensitization mechanism and I-1 inhibition as a potential novel strategy for heart failure treatment.
引用
收藏
页码:396 / 406
页数:11
相关论文
共 35 条
[1]   Protein phosphatase-1 regulation in the induction of long-term potentiation: Heterogeneous molecular mechanisms [J].
Allen, PB ;
Hvalby, O ;
Jensen, V ;
Errington, ML ;
Ramsay, M ;
Chaudhry, FA ;
Bliss, TVP ;
Storm-Mathisen, J ;
Morris, RGM ;
Andersen, P ;
Greengard, P .
JOURNAL OF NEUROSCIENCE, 2000, 20 (10) :3537-3543
[2]   Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase A [J].
Antos, CL ;
Frey, N ;
Marx, SO ;
Reiken, S ;
Gaburjakova, M ;
Richardson, JA ;
Marks, AR ;
Olson, EN .
CIRCULATION RESEARCH, 2001, 89 (11) :997-1004
[3]   The muscle-specific protein phosphatase PP1G/RGL(GM) is essential for activation of glycogen synthase by exercise [J].
Aschenbach, WG ;
Suzuki, Y ;
Breeden, K ;
Prats, C ;
Hirshman, MF ;
Dufresne, SD ;
Sakamoto, K ;
Vilardo, PG ;
Steele, M ;
Kim, JH ;
Jing, SL ;
Goodyear, LJ ;
DePaoli-Roach, AA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (43) :39959-39967
[4]   Intact β-adrenergic response and unmodified progression toward heart failure in mice with genetic ablation of a major protein kinase a phosphorylation site in the cardiac ryanodine receptor [J].
Benkusky, Nancy A. ;
Weber, Craig S. ;
Scherman, Joseph A. ;
Farrell, Emily F. ;
Hacker, Timothy A. ;
John, Manorama C. ;
Powers, Patricia A. ;
Valdivia, Hector H. .
CIRCULATION RESEARCH, 2007, 101 (08) :819-829
[5]   Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP [J].
Blitzer, RD ;
Conner, JH ;
Brown, GP ;
Wong, T ;
Shenolikar, S ;
Iyengar, R ;
Landau, EM .
SCIENCE, 1998, 280 (5371) :1940-1943
[6]   PKC-α regulates cardiac contractility and propensity toward heart failure [J].
Braz, JC ;
Gregory, K ;
Pathak, A ;
Zhao, W ;
Sahin, B ;
Klevitsky, R ;
Kimball, TF ;
Lorenz, JN ;
Nairn, AC ;
Liggett, SB ;
Bodi, I ;
Wang, S ;
Schwartz, A ;
Lakatta, EG ;
DePaoli-Roach, AA ;
Robbins, J ;
Hewett, TE ;
Bibb, JA ;
Westfall, MV ;
Kranias, EG ;
Molkentin, JD .
NATURE MEDICINE, 2004, 10 (03) :248-254
[7]   DECREASED CATECHOLAMINE SENSITIVITY AND BETA-ADRENERGIC-RECEPTOR DENSITY IN FAILING HUMAN HEARTS [J].
BRISTOW, MR ;
GINSBURG, R ;
MINOBE, W ;
CUBICCIOTTI, RS ;
SAGEMAN, WS ;
LURIE, K ;
BILLINGHAM, ME ;
HARRISON, DC ;
STINSON, EB .
NEW ENGLAND JOURNAL OF MEDICINE, 1982, 307 (04) :205-211
[8]   Type 1 phosphatase, a negative regulator of cardiac function [J].
Carr, AN ;
Schmidt, AG ;
Suzuki, Y ;
del Monte, F ;
Sato, Y ;
Lanner, C ;
Breeden, K ;
Jing, SL ;
Allen, PB ;
Greengard, P ;
Yatani, A ;
Hoit, BD ;
Grupp, IL ;
Hajjar, RJ ;
DePaoli-Roach, AA ;
Kranias, EG .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (12) :4124-4135
[9]   β-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase [J].
Curran, Jerald ;
Hinton, Mark J. ;
Rios, Eduardo ;
Bers, Donald M. ;
Shannon, Thomas R. .
CIRCULATION RESEARCH, 2007, 100 (03) :391-398
[10]   Decreased protein and phosphorylation level of the protein phosphatase inhibitor-1 in failing human hearts [J].
El-Armouche, A ;
Pamminger, T ;
Ditz, D ;
Zolk, O ;
Eschenhagen, T .
CARDIOVASCULAR RESEARCH, 2004, 61 (01) :87-93