Killing magnetic curves in three-dimensional almost paracontact manifolds

被引:46
作者
Calvaruso, Giovanni [1 ]
Munteanu, Marian Ioan [2 ]
Perrone, Antonella [1 ]
机构
[1] Univ Salento, Dipartimento Matemat & Fis E De Giorgi, I-73100 Lecce, Italy
[2] Univ Alexandru Ioan Cuza Iasi, Dept Math, Iasi 700506, Romania
关键词
Almost paracontact metric structures; Normal structures; Killing vector fields; Magnetic curves;
D O I
10.1016/j.jmaa.2015.01.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For an arbitrary three-dimensional normal paracontact metric structure equipped with a Killing characteristic vector field, we obtain a complete classification of the magnetic curves of the corresponding magnetic field. In particular, this yields to a complete description of magnetic curves for the characteristic vector field of three-dimensional paraSasakian and paracosymplectic manifolds. Explicit examples are described for the hyperbolic Heisenberg group and a paracosymplectic model. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:423 / 439
页数:17
相关论文
共 13 条
[1]   The Gauss-Landau-Hall problem on Riemannian surfaces -: art. no. 112905 [J].
Barros, M ;
Romero, A ;
Cabrerizo, JL ;
Fernández, M .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (11)
[2]   Magnetic vortices [J].
Barros, M. ;
Romero, A. .
EPL, 2007, 77 (03)
[3]   The contact magnetic flow in 3D Sasakian manifolds [J].
Cabrerizo, J. L. ;
Fernandez, M. ;
Gomez, J. S. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (19)
[4]  
Calvaruso G., CLASSIFICATION UNPUB
[5]  
Calvaruso G., HOPF MAGNETIC UNPUB
[6]  
Druta-Romaniuc S. L., 2013, PREPRINT
[7]   Conformal paracontact curvature and the local flatness theorem [J].
Ivanov, Stefan ;
Vassilev, Dimiter ;
Zamkovoy, Simeon .
GEOMETRIAE DEDICATA, 2010, 144 (01) :79-100
[8]   Magnetic Trajectories in an Almost Contact Metric Manifold R2N+1 [J].
Jleli, Mohamed ;
Munteanu, Marian Ioan ;
Nistor, Ana Irina .
RESULTS IN MATHEMATICS, 2015, 67 (1-2) :125-134
[9]  
Kuhnel W., 2006, STUD MATH LIB, V16
[10]   A note on magnetic curves on S2n+1 [J].
Munteanu, Marian Ioan ;
Nistor, Ana Irina .
COMPTES RENDUS MATHEMATIQUE, 2014, 352 (05) :447-449