A complete mitochondrial genome sequence of Ogura-type male-sterile cytoplasm and its comparative analysis with that of normal cytoplasm in radish (Raphanus sativus L.)

被引:83
作者
Tanaka, Yoshiyuki [1 ]
Tsuda, Mizue [1 ]
Yasumoto, Keita [1 ]
Yamagishi, Hiroshi [1 ]
Terachi, Toru [1 ]
机构
[1] Kyoto Sangyo Univ, Fac Life Sci, Lab 31, Kita Ku, Kyoto 6038555, Japan
关键词
JAPANESE WILD RADISHES; DNA REARRANGEMENTS; BRASSICA-NAPUS; TRANSFER-RNA; ORFB LOCUS; CMS LINE; GENES; CRUCIFERAE; EXPRESSION; TRANSCRIPTION;
D O I
10.1186/1471-2164-13-352
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Plant mitochondrial genome has unique features such as large size, frequent recombination and incorporation of foreign DNA. Cytoplasmic male sterility (CMS) is caused by rearrangement of the mitochondrial genome, and a novel chimeric open reading frame (ORF) created by shuffling of endogenous sequences is often responsible for CMS. The Ogura-type male-sterile cytoplasm is one of the most extensively studied cytoplasms in Brassicaceae. Although the gene orf138 has been isolated as a determinant of Ogura-type CMS, no homologous sequence to orf138 has been found in public databases. Therefore, how orf138 sequence was created is a mystery. In this study, we determined the complete nucleotide sequence of two radish mitochondrial genomes, namely, Ogura-and normal-type genomes, and analyzed them to reveal the origin of the gene orf138. Results: Ogura-and normal-type mitochondrial genomes were assembled to 258,426-bp and 244,036-bp circular sequences, respectively. Normal-type mitochondrial genome contained 33 protein-coding and three rRNA genes, which are well conserved with the reported mitochondrial genome of rapeseed. Ogura-type genomes contained same genes and additional atp9. As for tRNA, normal-type contained 17 tRNAs, while Ogura-type contained 17 tRNAs and one additional trnfM. The gene orf138 was specific to Ogura-type mitochondrial genome, and no sequence homologous to it was found in normal-type genome. Comparative analysis of the two genomes revealed that radish mitochondrial genome consists of 11 syntenic regions (length >3 kb, similarity >99.9%). It was shown that short repeats and overlapped repeats present in the edge of syntenic regions were involved in recombination events during evolution to interconvert two types of mitochondrial genome. Ogura-type mitochondrial genome has four unique regions (2,803 bp, 1,601 bp, 451 bp and 15,255 bp in size) that are non-syntenic to normal-type genome, and the gene orf138 was found to be located at the edge of the largest unique region. Blast analysis performed to assign the unique regions showed that about 80% of the region was covered by short homologous sequences to the mitochondrial sequences of normal-type radish or other reported Brassicaceae species, although no homology was found for the remaining 20% of sequences. Conclusions: Ogura-type mitochondrial genome was highly rearranged compared with the normal-type genome by recombination through one large repeat and multiple short repeats. The rearrangement has produced four unique regions in Ogura-type mitochondrial genome, and most of the unique regions are composed of known Brassicaceae mitochondrial sequences. This suggests that the regions unique to the Ogura-type genome were generated by integration and shuffling of pre-existing mitochondrial sequences during the evolution of Brassicaceae, and novel genes such as orf138 could have been created by the shuffling process of mitochondrial genome.
引用
收藏
页数:12
相关论文
共 49 条
[1]   The Mitochondrial Genome of the Legume Vigna radiata and the Analysis of Recombination across Short Mitochondrial Repeats [J].
Alverson, Andrew J. ;
Zhuo, Shi ;
Rice, Danny W. ;
Sloan, Daniel B. ;
Palmer, Jeffrey D. .
PLOS ONE, 2011, 6 (01)
[2]  
Bannerot H., 1977, Eucarpia Cruciferae Newsletter, V2, P16
[4]   Species Recognition and Cryptic Species in the Tuber indicum Complex [J].
Chen, Juan ;
Guo, Shun-Xing ;
Liu, Pei-Gui .
PLOS ONE, 2011, 6 (01)
[5]   Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae [J].
Duroc, Y ;
Gaillard, C ;
Hiard, S ;
Defrance, MC ;
Pelletier, G ;
Budar, F .
BIOCHIMIE, 2005, 87 (12) :1089-1100
[6]   Substoichiometric shifting in the fertility reversion of cytoplasmic male sterile pearl millet [J].
Feng, X. ;
Kaur, A. P. ;
Mackenzie, S. A. ;
Dweikat, I. M. .
THEORETICAL AND APPLIED GENETICS, 2009, 118 (07) :1361-1370
[7]   Discovery of global genomic re-organization based on comparison of two newly sequenced rice mitochondrial genomes with cytoplasmic male sterility-related genes [J].
Fujii, Sota ;
Kazama, Tomohiko ;
Yamada, Mari ;
Toriyama, Kinya .
BMC GENOMICS, 2010, 11
[8]   Polyadenylation accelerates the degradation of the mitochondrial mRNA associated with cytoplasmic male sterility in sunflower [J].
Gagliardi, D ;
Leaver, CJ .
EMBO JOURNAL, 1999, 18 (13) :3757-3766
[9]   The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.):: comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana [J].
Handa, H .
NUCLEIC ACIDS RESEARCH, 2003, 31 (20) :5907-5916
[10]   Interactions of mitochondrial and nuclear genes that affect male gametophyte development [J].
Hanson, MR ;
Bentolila, S .
PLANT CELL, 2004, 16 :S154-S169