Emotion Recognition from Human Speech Using Temporal Information and Deep Learning

被引:31
|
作者
Kim, John W. [1 ]
Saurous, Rif A. [2 ]
机构
[1] Menlo Sch, Atherton, CA USA
[2] Google Inc, Mountain View, CA USA
来源
19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES | 2018年
关键词
emotion recognition; temporal information; deep learning; CNN; LSTM;
D O I
10.21437/Interspeech.2018-1132
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emotion recognition by machine is a challenging task, but it has great potential to make empathic human-machine communications possible. In conventional approaches that consist of feature extraction and classifier stages, extensive studies have devoted their effort to developing good feature representations, but relatively little effort was made to make proper use of the important temporal information in these features. In this paper, we propose a model combining features known to be useful for emotion recognition and deep neural networks to exploit temporal information when recognizing emotion status. A benchmark evaluation on EMO-DB demonstrates that the proposed model achieves a state-of-the-art performance of 88.9% recognition rate.
引用
收藏
页码:937 / 940
页数:4
相关论文
共 50 条
  • [1] Deep Learning Techniques for Speech Emotion Recognition, from Databases to Models
    Abbaschian, Babak Joze
    Sierra-Sosa, Daniel
    Elmaghraby, Adel
    SENSORS, 2021, 21 (04) : 1 - 27
  • [2] Speech Emotion Recognition Using Deep Learning
    Alagusundari, N.
    Anuradha, R.
    ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, VOL 1, AITA 2023, 2024, 843 : 313 - 325
  • [3] Speech Emotion Recognition Using Deep Learning
    Ahmed, Waqar
    Riaz, Sana
    Iftikhar, Khunsa
    Konur, Savas
    ARTIFICIAL INTELLIGENCE XL, AI 2023, 2023, 14381 : 191 - 197
  • [4] Speech emotion recognition for psychotherapy: an analysis of traditional machine learning and deep learning techniques
    Shah, Nidhi
    Sood, Kanika
    Arora, Jayraj
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 718 - 723
  • [5] Automatic Emotion Recognition Using Temporal Multimodal Deep Learning
    Nakisa, Bahareh
    Rastgoo, Mohammad Naim
    Rakotonirainy, Andry
    Maire, Frederic
    Chandran, Vinod
    IEEE ACCESS, 2020, 8 : 225463 - 225474
  • [6] Emotion recognition of audio/speech data using deep learning approaches
    Gupta, Vedika
    Juyal, Stuti
    Singh, Gurvinder Pal
    Killa, Chirag
    Gupta, Nishant
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2020, 41 (06) : 1309 - 1317
  • [7] Speech Emotion Recognition and Deep Learning: An Extensive Validation Using Convolutional Neural Networks
    Ri, Francesco Ardan Dal
    Ciardi, Fabio Cifariello
    Conci, Nicola
    IEEE ACCESS, 2023, 11 : 116638 - 116649
  • [8] Pattern recognition and features selection for speech emotion recognition model using deep learning
    Jermsittiparsert, Kittisak
    Abdurrahman, Abdurrahman
    Siriattakul, Parinya
    Sundeeva, Ludmila A.
    Hashim, Wahidah
    Rahim, Robbi
    Maseleno, Andino
    INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2020, 23 (04) : 799 - 806
  • [9] Pattern recognition and features selection for speech emotion recognition model using deep learning
    Kittisak Jermsittiparsert
    Abdurrahman Abdurrahman
    Parinya Siriattakul
    Ludmila A. Sundeeva
    Wahidah Hashim
    Robbi Rahim
    Andino Maseleno
    International Journal of Speech Technology, 2020, 23 : 799 - 806
  • [10] SPEECH EMOTION RECOGNITION USING SEMANTIC INFORMATION
    Tzirakis, Panagiotis
    Anh Nguyen
    Zafeiriou, Stefanos
    Schuller, Bjoern W.
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 6279 - 6283