Notes on the total positivity of Riordan arrays

被引:16
作者
Chen, Xi [1 ]
Wang, Yi [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Riordan array; Total positivity; Polya frequency sequence; COMBINATORICS;
D O I
10.1016/j.laa.2019.01.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R = ( d(t), h(t) ) be a Riordan array. We show that if both d(t) and h(t) are Polya frequency formal power series, then R is totally positive. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:156 / 161
页数:6
相关论文
共 15 条
[1]  
[Anonymous], MATH
[2]  
[Anonymous], 1968, TOTAL POSITIVITY
[3]  
Barry P, 2013, J INTEGER SEQ, V16
[4]   COMBINATORICS AND TOTAL POSITIVITY [J].
BRENTI, F .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1995, 71 (02) :175-218
[5]   Total positivity of recursive matrices [J].
Chen, Xi ;
Liang, Huyile ;
Wang, Yi .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 471 :383-393
[6]   Total positivity of Riordan arrays [J].
Chen, Xi ;
Liang, Huyile ;
Wang, Yi .
EUROPEAN JOURNAL OF COMBINATORICS, 2015, 46 :68-74
[7]   Combinatorics of Riordan arrays with identical A and Z sequences [J].
Cheon, Gi-Sang ;
Kim, Hana ;
Shapiro, Louis W. .
DISCRETE MATHEMATICS, 2012, 312 (12-13) :2040-2049
[8]   Sequence characterization of Riordan arrays [J].
He, Tian-Xiao ;
Sprugnoli, Renzo .
DISCRETE MATHEMATICS, 2009, 309 (12) :3962-3974
[9]   Identities induced by Riordan arrays [J].
Luzon, Ana ;
Merlini, Donatella ;
Moron, Manuel A. ;
Sprugnoli, Renzo .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (03) :631-647
[10]  
Mu LL, 2017, J INTEGER SEQ, V20