Current state and future prospects of artificial intelligence in ophthalmology: a review

被引:113
作者
Hogarty, Daniel T. [1 ]
Mackey, David A. [1 ,2 ,3 ]
Hewitt, Alex W. [1 ,2 ,3 ]
机构
[1] Univ Melbourne, Royal Victorian Eye & Ear Hosp, Ctr Eye Res Australia, Melbourne, Vic, Australia
[2] Univ Western Australia, Ctr Vis Sci, Lions Eye Inst, Perth, WA, Australia
[3] Univ Tasmania, Menzies Inst Med Res, Hobart, Tas, Australia
关键词
artificial intelligence; deep learning; diabetic retinopathy; machine learning; ophthalmology; MACHINE LEARNING CLASSIFIERS; COLLAGEN CROSS-LINKING; DIABETIC-RETINOPATHY; KERATOCONUS DETECTION; MACULAR DEGENERATION; AUTOMATED IDENTIFICATION; CORNEAL TOPOGRAPHY; NEURAL-NETWORK; DEEP; AGE;
D O I
10.1111/ceo.13381
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
Artificial intelligence (AI) has emerged as a major frontier in computer science research. Although AI has broad application across many medical fields, it will have particular utility in ophthalmology and will dramatically change the diagnostic and treatment pathways for many eye conditions such as corneal ectasias, glaucoma, age-related macular degeneration and diabetic retinopathy. However, given that AI has primarily been driven as a computer science, its concepts and terminology are unfamiliar to many medical professionals. Important key terms such as machine learning and deep learning are often misunderstood and incorrectly used interchangeably. This article presents an overview of AI and new developments relevant to ophthalmology.
引用
收藏
页码:128 / 139
页数:12
相关论文
共 75 条
[1]   Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features [J].
Abbas, Qaisar ;
Fondon, Irene ;
Sarmiento, Auxiliadora ;
Jimenez, Soledad ;
Alemany, Pedro .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2017, 55 (11) :1959-1974
[2]   Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques [J].
Akyol, Kemal ;
Sen, Baha ;
Bayir, Safak .
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2016, 2016
[3]   Non-proliferative diabetic retinopathy symptoms detection and classification using neural network [J].
Al-Jarrah, Mohammad A. ;
Shatnawi, Hadeel .
Journal of Medical Engineering and Technology, 2017, 41 (06) :498-505
[4]   Intrastromal corneal ring segment implantation in paracentral keratoconus with coincident topographic and coma axis [J].
Alfonso, Jose F. ;
Lisa, Carlos ;
Merayo-Lloves, Jesus ;
Fernandez-Vega Cueto, Luis ;
Montes-Mico, Robert .
JOURNAL OF CATARACT AND REFRACTIVE SURGERY, 2012, 38 (09) :1576-1582
[5]   Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection [J].
Ambrosio, Renato, Jr. ;
Lopes, Bernardo T. ;
Faria-Correia, Fernando ;
Salomao, Marcella Q. ;
Buhren, Jens ;
Roberts, Cynthia J. ;
Elsheikh, Ahmed ;
Vinciguerra, Riccardo ;
Vinciguerra, Paolo .
JOURNAL OF REFRACTIVE SURGERY, 2017, 33 (07) :434-+
[6]   Use of a Support Vector Machine for Keratoconus and Subclinical Keratoconus Detection by Topographic and Tomographic Data [J].
Arbelaez, Maria Clara ;
Versaci, Francesco ;
Vestri, Gabriele ;
Barboni, Piero ;
Savini, Giacomo .
OPHTHALMOLOGY, 2012, 119 (11) :2231-2238
[7]   Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier [J].
Asaoka, Ryo ;
Murata, Hiroshi ;
Iwase, Aiko ;
Araie, Makoto .
OPHTHALMOLOGY, 2016, 123 (09) :1974-1980
[8]   Use of a Neural Net to Model the Impact of Optical Coherence Tomography Abnormalities on Vision in Age-related Macular Degeneration [J].
Aslam, Tariq M. ;
Zaki, Haider R. ;
Mahmood, Sajjad ;
Ali, Zaria C. ;
Ahmad, Nur A. ;
Thorell, Mariana R. ;
Balaskas, Konstantinos .
AMERICAN JOURNAL OF OPHTHALMOLOGY, 2018, 185 :94-100
[9]   Prediction of Anti-VEGF Treatment Requirements in Neovascular AMD Using a Machine Learning Approach [J].
Bogunovic, Hrvoje ;
Waldstein, Sebastian M. ;
Schlegl, Thomas ;
Langs, Georg ;
Sadeghipour, Amir ;
Liu, Xuhui ;
Gerendas, Bianca S. ;
Osborne, Aaron ;
Schmidt-Erfurth, Ursula .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (07) :3240-3248
[10]   Machine Learning of the Progression of Intermediate Age-Related Macular Degeneration Based on OCT Imaging [J].
Bogunovic, Hrvoje ;
Montuoro, Alessio ;
Baratsits, Magdalena ;
Karantonis, Maria G. ;
Waldstein, Sebastian M. ;
Schlanitz, Ferdinand ;
Schmidt-Erfurth, Ursula .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2017, 58 (06) :BIO141-BIO150