Autophagy: A Crucial Moderator of Redox Balance, Inflammation, and Apoptosis in Lung Disease

被引:100
作者
Nakahira, Kiichi [1 ]
Cloonan, Suzanne M. [1 ]
Mizumura, Kenji [1 ]
Choi, Augustine M. K. [1 ]
Ryter, Stefan W. [1 ]
机构
[1] Harvard Univ, Brigham & Womens Hosp, Sch Med, Div Pulm & Crit Care Med,Dept Med, Boston, MA 02113 USA
关键词
ENDOPLASMIC-RETICULUM STRESS; CHAPERONE-MEDIATED AUTOPHAGY; TRANSCRIPTION FACTOR NRF2; HEPATITIS-B-VIRUS; OXIDATIVE STRESS; CELL-DEATH; CYSTIC-FIBROSIS; MITOCHONDRIAL DYSFUNCTION; INSUFFICIENT AUTOPHAGY; REGULATES AUTOPHAGY;
D O I
10.1089/ars.2013.5373
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Significance: Autophagy is a fundamental cellular process that functions in the turnover of subcellular organelles and protein. Activation of autophagy may represent a cellular defense against oxidative stress, or related conditions that cause accumulation of damaged proteins or organelles. Selective forms of autophagy can maintain organelle populations or remove aggregated proteins. Autophagy can increase survival during nutrient deficiency and play a multifunctional role in host defense, by promoting pathogen clearance and modulating innate and adaptive immune responses. Recent Advances: Autophagy has been described as an inducible response to oxidative stress. Once believed to represent a random process, recent studies have defined selective mechanisms for cargo assimilation into autophagosomes. Such mechanisms may provide for protein aggregate detoxification and mitochondrial homeostasis during oxidative stress. Although long studied as a cellular phenomenon, recent advances implicate autophagy as a component of human diseases. Altered autophagy phenotypes have been observed in various human diseases, including lung diseases such as chronic obstructive lung disease, cystic fibrosis, pulmonary hypertension, and idiopathic pulmonary fibrosis. Critical Issues: Although autophagy can represent a pro-survival process, in particular, during nutrient starvation, its role in disease pathogenesis may be multifunctional and complex. The relationship of autophagy to programmed cell death pathways is incompletely defined and varies with model system. Future Directions: Activation or inhibition of autophagy may be used to alter the progression of human diseases. Further resolution of the mechanisms by which autophagy impacts the initiation and progression of diseases may lead to the development of therapeutics specifically targeting this pathway. Antioxid. Redox Signal. 20, 474-494.
引用
收藏
页码:474 / 494
页数:21
相关论文
共 198 条
[31]   Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission [J].
Dagda, Ruben K. ;
Cherra, Salvatore J., III ;
Kulich, Scott M. ;
Tandon, Anurag ;
Park, David ;
Chu, Charleen T. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (20) :13843-13855
[32]   The Inflammasome NLRs in Immunity, Inflammation, and Associated Diseases [J].
Davis, Beckley K. ;
Wen, Haitao ;
Ting, Jenny P. -Y. .
ANNUAL REVIEW OF IMMUNOLOGY, VOL 29, 2011, 29 :707-735
[33]  
De Bels D, 2011, NEW ENGL J MED, V365, P1845, DOI [10.1056/NEJMra1011165, 10.1056/NEJMc1110602]
[34]   NBR1 acts as an autophagy receptor for peroxisomes [J].
Deosaran, Elizabeth ;
Larsen, Kenneth B. ;
Hua, Rong ;
Sargent, Graeme ;
Wang, Yuqing ;
Kim, Sarah ;
Lamark, Trond ;
Jauregui, Miluska ;
Law, Kelsey ;
Lippincott-Schwartz, Jennifer ;
Brech, Andreas ;
Johansen, Terje ;
Kim, Peter K. .
JOURNAL OF CELL SCIENCE, 2013, 126 (04) :939-952
[35]   Autophagy: An Emerging Immunological Paradigm [J].
Deretic, Vojo .
JOURNAL OF IMMUNOLOGY, 2012, 189 (01) :15-20
[36]   Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors [J].
Deretic, Vojo .
CURRENT OPINION IN IMMUNOLOGY, 2012, 24 (01) :21-31
[37]   Autophagy, Immunity, and Microbial Adaptations [J].
Deretic, Vojo ;
Levine, Beth .
CELL HOST & MICROBE, 2009, 5 (06) :527-549
[38]   Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival [J].
Ding, Wen-Xing ;
Ni, Hong-Min ;
Gao, Wentao ;
Hou, Yi-Feng ;
Melan, Melissa A. ;
Chen, Xiaoyun ;
Stolz, Donna B. ;
Shao, Zhi-Ming ;
Yin, Xiao-Ming .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (07) :4702-4710
[39]   Nix Is Critical to Two Distinct Phases of Mitophagy, Reactive Oxygen Species-mediated Autophagy Induction and Parkin-Ubiquitin-p62-mediated Mitochondrial Priming [J].
Ding, Wen-Xing ;
Ni, Hong-Min ;
Li, Min ;
Liao, Yong ;
Chen, Xiaoyun ;
Stolz, Donna B. ;
Dorn, Gerald W., II ;
Yin, Xiao-Ming .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2010, 285 (36) :27879-27890
[40]   Regulation of autophagy by NFκB transcription factor and reactives oxygen species [J].
Djavaheri-Mergny, Mojgan ;
Amelotti, Manuella ;
Mathieu, Julie ;
Besancon, Francoise ;
Bauvy, Chantal ;
Codogno, Patrice .
AUTOPHAGY, 2007, 3 (04) :390-392