Boundary value problem for a nonlinear equation of mixed type

被引:5
作者
Feng, Zhenguo [1 ]
Kuang, Jie [2 ]
机构
[1] Shanghai Customs Coll, Dept Fundamental Courses, Shanghai 200444, Peoples R China
[2] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear Lavrentiev-Bitsadze equation; Riemann method; Mixed boundary value problem; OBLIQUE DERIVATIVE PROBLEMS; TRICOMI PROBLEM; 2ND-ORDER; DOMAIN;
D O I
10.1016/j.jde.2013.07.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the boundary value problem for a nonlinear Lavrentiev-Bitsadze equation of mixed type partial derivative(2)(u) over cap/partial derivative x(2) + (sgn y)(1 + (u) over cap (2)(x)) partial derivative(2)(u) over cap/partial derivative y(2) = 0, whose coefficients depend on the first order derivatives of unknown function. Above y = 0 and below y = 0, the equation becomes the nonlinear elliptic equation and nonlinear hyperbolic, equation respectively, this is different from the equation studied in Chen (2011) [9]. We prove the existence of solution to the problem by the method which can be used to study more difficult problems for nonlinear equations of mixed type arising in gas dynamics. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3029 / 3052
页数:24
相关论文
共 35 条
[1]  
[Anonymous], REND REALE ACCAD LIN
[2]  
Bitsadze A.V., 1950, SOOBSC AKAD NAUK GRU, V11, P205
[3]  
Bitsadze A. V., 1951, DOKL AKAD NAUK SSSR, V78, P621
[4]  
Bitsadze A.V., 1988, ADV STUD CONT MATH, V4
[5]  
BITSADZE AV, 1950, DOKL AKAD NAUK SSSR+, V70, P561
[6]  
BITSADZE AV, 1964, DIFFERENTIAL EQUATIO
[7]  
Chaplygin S.A., 1904, GAS JETS
[8]   The Tricomi problem of a quasi-linear Lavrentiev-Bitsadze mixed type equation [J].
Chen Shuxing ;
Feng Zhenguo .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (03) :755-766
[9]   A NONLINEAR LAVRENTIEV-BITSADZE MIXED TYPE EQUATION [J].
Chen Shuxing .
ACTA MATHEMATICA SCIENTIA, 2011, 31 (06) :2378-2388
[10]   MIXED TYPE EQUATIONS IN GAS DYNAMICS [J].
Chen, Shuxing .
QUARTERLY OF APPLIED MATHEMATICS, 2010, 68 (03) :487-511