Hamiltonian cycles in 4-connected plane triangulations with few 4-separators

被引:3
作者
Lo, On-Hei Solomon [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
关键词
4-connected plane triangulations; Hamiltonian cycles; Counting base; NUMBER;
D O I
10.1016/j.disc.2020.112126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Hakimi, Schmeichel and Thomassen showed in 1979 that every 4-connected triangu-lation on n vertices has at least n/log(2) n hamiltonian cycles, and conjectured that the sharp lower bound is 2(n - 2)(n - 4). Recently, Brinkmann, Souffriau and Van Cleemput gave an improved lower bound 12/5 (n - 2). In this paper we show that every 4-connected triangulation with O(log n) 4-separators has Omega(n(2)/log(2) n) hamiltonian cycles. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 8 条
  • [1] Alahmadi A., 2019, J COMBIN THEORY B
  • [2] Brinkmann G, 2019, ELECTRON J COMB, V26
  • [3] Brinkmann G., 4 CONNECTED PO UNPUB
  • [4] On the number of hamiltonian cycles in triangulations with few separating triangles
    Brinkmann, Gunnar
    Souffriau, Jasper
    Van Cleemput, Nico
    [J]. JOURNAL OF GRAPH THEORY, 2018, 87 (02) : 164 - 175
  • [5] NUMBER OF HAMILTONIAN CYCLES IN A MAXIMAL PLANAR GRAPH
    HAKIMI, SL
    SCHMEICHEL, EF
    THOMASSEN, C
    [J]. JOURNAL OF GRAPH THEORY, 1979, 3 (04) : 365 - 370
  • [6] Hamilton cycles in plane triangulations
    Jackson, B
    Yu, XX
    [J]. JOURNAL OF GRAPH THEORY, 2002, 41 (02) : 138 - 150
  • [7] Tutte W.T., 1956, Trans. Am. Math. Soc., V82, P99, DOI DOI 10.1090/S0002-9947-1956-0081471-8
  • [8] Whitney H., 1931, ANN MATH, V32, P378, DOI [DOI 10.2307/1968197, 10.2307/1968197]