Some open questions in analysis for Dirichlet series

被引:12
作者
Saksman, Eero [1 ]
Seip, Kristian [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FI-00170 Helsinki, Finland
[2] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
来源
RECENT PROGRESS ON OPERATOR THEORY AND APPROXIMATION IN SPACES OF ANALYTIC FUNCTIONS | 2016年 / 679卷
关键词
COMPOSITION OPERATORS; HILBERT-SPACE; GCD SUMS; APPROXIMATION NUMBERS; HANKEL-OPERATORS; EXTREME VALUES; HARDY-SPACES; H-P; INEQUALITY; POLYDISK;
D O I
10.1090/conm/679/13675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some open problems and describe briefly some possible research directions in the emerging theory of Hardy spaces of Dirichlet series and their intimate counterparts, Hardy spaces on the infinite-dimensional torus. Links to number theory are emphasized throughout the paper.
引用
收藏
页码:179 / 191
页数:13
相关论文
共 88 条
[31]   An inequality of Hardy-Littlewood type for Dirichlet polynomials [J].
Bondarenko, Andriy ;
Heap, Winston ;
Seip, Kristian .
JOURNAL OF NUMBER THEORY, 2015, 150 :191-205
[32]  
BONDARENKO AV, UNPUB
[33]   The multiplicative Hilbert matrix [J].
Brevig, Ole Fredrik ;
Perfekt, Karl-Mikael ;
Seip, Kristian ;
Siskakis, Aristomenis G. ;
Vukotic, Dragan .
ADVANCES IN MATHEMATICS, 2016, 302 :410-432
[34]  
COLE BJ, 1986, P LOND MATH SOC, V53, P112
[35]   On the order of magnitude of Dirichlet polynomials [J].
de la Breteche, Regis .
ACTA ARITHMETICA, 2008, 134 (02) :141-148
[36]   The Bohnenblust-Hille inequality for homogeneous polynomials is hypercontractive [J].
Defant, Andreas ;
Frerick, Leonhard ;
Ortega-Cerda, Joaquim ;
Ounaies, Myriam ;
Seip, Kristian .
ANNALS OF MATHEMATICS, 2011, 174 (01) :485-497
[37]   Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation [J].
Duplantier, Bertrand ;
Rhodes, Remi ;
Sheffield, Scott ;
Vargas, Vincent .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (01) :283-330
[38]  
Duren P.L., 1970, Pure and Applied Mathematics, V38, P74
[39]  
DYER T, 1986, J LOND MATH SOC, V34, P1
[40]   The maximum size of L-functions [J].
Farmer, David W. ;
Gonek, S. M. ;
Hughes, C. P. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 609 :215-236