Some open questions in analysis for Dirichlet series

被引:12
作者
Saksman, Eero [1 ]
Seip, Kristian [2 ]
机构
[1] Univ Helsinki, Dept Math & Stat, FI-00170 Helsinki, Finland
[2] Norwegian Univ Sci & Technol, Dept Math Sci, NO-7491 Trondheim, Norway
来源
RECENT PROGRESS ON OPERATOR THEORY AND APPROXIMATION IN SPACES OF ANALYTIC FUNCTIONS | 2016年 / 679卷
关键词
COMPOSITION OPERATORS; HILBERT-SPACE; GCD SUMS; APPROXIMATION NUMBERS; HANKEL-OPERATORS; EXTREME VALUES; HARDY-SPACES; H-P; INEQUALITY; POLYDISK;
D O I
10.1090/conm/679/13675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some open problems and describe briefly some possible research directions in the emerging theory of Hardy spaces of Dirichlet series and their intimate counterparts, Hardy spaces on the infinite-dimensional torus. Links to number theory are emphasized throughout the paper.
引用
收藏
页码:179 / 191
页数:13
相关论文
共 88 条
[1]   Lower bounds for the maximum of the Riemann zeta function along vertical lines [J].
Aistleitner, Christoph .
MATHEMATISCHE ANNALEN, 2016, 365 (1-2) :473-496
[2]   GCD sums from Poisson integrals and systems of dilated functions [J].
Aistleitner, Christoph ;
Berkes, Istvan ;
Seip, Kristian .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2015, 17 (06) :1517-1546
[3]   An integral operator on Hp and Hardy's inequality [J].
Aleman, A ;
Cima, JA .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 85 (1) :157-176
[4]  
Aleman A., J ANAL MATH IN PRESS
[5]   Fourier Multipliers for Hardy Spaces of Dirichlet Series [J].
Aleman, Alexandru ;
Olsen, Jan-Fredrik ;
Saksman, Eero .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (16) :4368-4378
[6]  
[Anonymous], 1999, DUKE MATH J, DOI DOI 10.1215/S0012-7094-99-09907-6
[7]  
[Anonymous], ARXIV150705840
[8]  
[Anonymous], CBMS REGIONAL C SERI
[9]  
[Anonymous], ARXIV14082334
[10]  
[Anonymous], 1949, Nieuw Arch. Wiskd.