Schrodinger cat states in continuous variable non-Gaussian networks

被引:7
作者
Sokolov, I., V [1 ]
机构
[1] St Petersburg State Univ, Univ Skaya Nab 7-9, St Petersburg 199034, Russia
基金
俄罗斯基础研究基金会;
关键词
Continuous variable quantum networks; Measurement-induced evolution; Non-Gaussian gates; Schrodinger cat states; QUANTUM COMPUTATION; INFORMATION;
D O I
10.1016/j.physleta.2020.126762
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how continuous variable network with embedded non-Gaussian element can effectively prepare Schrodinger cat state using cubic phase state as elementary non-Gaussian resource, an entangling Gaussian gate, and homodyne measurement. The gate prepares superposition of two "copies" of an arbitrary input state well separated on the phase plane. A key feature of the cat-breeding configuration is that the measurement outcome provides multivalued information about the target system variables, which makes irrelevant the Heisenberg picture as it is applied to Gaussian networks. We present an intuitively clear interpretation of the emerging cat state, extendable to the circuits with other non-Gaussian elements. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 25 条
  • [21] Ukai R, 2015, SPRINGER THESES-RECO, P1, DOI 10.1007/978-4-431-55019-8
  • [22] Gaussian quantum information
    Weedbrook, Christian
    Pirandola, Stefano
    Garcia-Patron, Raul
    Cerf, Nicolas J.
    Ralph, Timothy C.
    Shapiro, Jeffrey H.
    Lloyd, Seth
    [J]. REVIEWS OF MODERN PHYSICS, 2012, 84 (02) : 621 - 669
  • [23] Yokoyama S, 2013, NAT PHOTONICS, V7, P982, DOI [10.1038/nphoton.2013.287, 10.1038/NPHOTON.2013.287]
  • [24] Emulating quantum cubic nonlinearity
    Yukawa, Mitsuyoshi
    Miyata, Kazunori
    Yonezawa, Hidehiro
    Marek, Petr
    Filip, Radim
    Furusawa, Akira
    [J]. PHYSICAL REVIEW A, 2013, 88 (05):
  • [25] GENERATING QUANTUM-MECHANICAL SUPERPOSITIONS OF MACROSCOPICALLY DISTINGUISHABLE STATES VIA AMPLITUDE DISPERSION
    YURKE, B
    STOLER, D
    [J]. PHYSICAL REVIEW LETTERS, 1986, 57 (01) : 13 - 16