Iterative solution of the quasicontinuum equilibrium equations with continuation

被引:14
作者
Dobson, Matthew [1 ]
Luskin, Mitchell [1 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
关键词
quasicontinuum; atomistic to continuum; continuation; fracture;
D O I
10.1007/s10915-008-9208-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an analysis of a continuation algorithm for the numerical solution of the force-based quasicontinuum equations. The approximate solution of the force-based quasicontinuum equations is computed by an iterative method using an energy-based quasicontinuum approximation as the preconditioner. The analysis presented in this paper is used to determine an efficient strategy for the parameter step size and number of iterations at each parameter value to achieve a solution to a required tolerance. We present computational results for the deformation of a Lennard-Jones chain under tension to demonstrate the necessity of carefully applying continuation to ensure that the computed solution remains in the domain of convergence of the iterative method as the parameter is increased. These results exhibit fracture before the actual load limit if the parameter step size is too large.
引用
收藏
页码:19 / 41
页数:23
相关论文
共 25 条
[1]  
[Anonymous], LECT NOTES NUMERICAL
[2]  
ARNDT M, 2008, COMPUT METH IN PRESS
[3]   Error estimation and atomistic-continuum adaptivity for the quasicontinuum approximation of a Frenkel-Kontorova model [J].
Arndt, Marcel ;
Luskin, Mitchell .
MULTISCALE MODELING & SIMULATION, 2008, 7 (01) :147-170
[4]   Goal-oriented atomistic-continuum adaptivity for the quasicontinuum approximation [J].
Arndt, Marcel ;
Luskin, Mitchell .
INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2007, 5 (05) :407-415
[5]  
BANK RE, 1982, MATH COMPUT, V39, P453, DOI 10.1090/S0025-5718-1982-0669639-X
[6]   Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics [J].
Blanc, X ;
Le Bris, C ;
Legoll, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2005, 39 (04) :797-826
[7]   Atomistic/continuum coupling in computational materials science [J].
Curtin, WA ;
Miller, RE .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2003, 11 (03) :R33-R68
[8]   Analysis of a force-based quasicontinuum approximation [J].
Dobson, Matthew ;
Luskin, Mitchell .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (01) :113-139
[9]  
KELLER HB, 1977, PUBL MATH RES CTR, V38, P359
[10]   An analysis of the quasicontinuum method [J].
Knap, J ;
Ortiz, M .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2001, 49 (09) :1899-1923